Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Multiphysical Modeling of Calcium Carbonate Transportation in UV Disinfection in Water Treatment

E. R. Blatchley[1], and B.Z. Sun[1]
[1]Department of Civil Engineering, Purdue University, West Lafayette, IN, USA

Mineral precipitation on to the quartz surface of the lamp jackets in UV disinfection process (fouling) has been recognized as a major problem for UV radiation delivery during disinfection operation. Fouling behavior was observed to be induced thermally and influenced by hydraulic character of the UV disinfection configuration. Fouling process involves momentum, heat, and mass transport within ...

Solid State Transport of Reactive Charged Particles: Application to Metal Oxidation

P. Buttin[1], B. Malki[1], P. Barberis[2], and B. Baroux[1]
[1]SIMAP/groupe SIR, CNRS, France
[2]AREVA - AREVA NP - CEZUS Research Center, France

This paper studies multicomponent transport through zirconia, assuming a chemical reaction involving electrons and oxygen vacancies defects. Classically, according to the Wagner theory for ambipolar diffusion, the electroneutrality condition in the oxide is considered. Therefore three constraints must be satisfied on the transport problem: oxide stoichiometry, electroneutrality and the source ...

Experimental and Numerical Study of Microbial Improved Oil Recovery in a Pore Scale Model by using COMSOL

M. Shabani Afrapoli, L. Shidong, S. Alipour , and O. Torsaeter
Department of Petroleum Engineering and Applied Geophysics
Trondheim, Norway

A number of visualization experiments are carried out at the laboratory temperature with oil, brine and bacteria suspension for evaluating the performance of MIOR in a glass micromodel. The observations show the effects of bacteria on remaining oil saturation. The interfacial tension reduction, wettability alteration and flow pattern changes are recognized as active mechanisms. COMSOL ...

Coupled Heat and Moisture Transfer in Building Components - Implementing WUFI® Approaches in COMSOL Multiphysics

B. Nusser[1], M. Teibinger[1]
[1]Holzforschung Austria, Vienna, Austria

Calculating time-dependent heat and moisture transports trough building components are important tasks in the area of building physics. A well known and worldwide used commercial software for this is WUFI®. From the scientific point of view the restricted access to governing equations is nevertheless a drawback of this software. In the present paper it is shown how the physical approaches used ...

Numerical Simulation of Warm-Air Drying of Mexican Softwood (Pinus Pseudostrobus)

S. Sandoval Torres[1], E. Hernández-Bautista[1], J. Rodríguez-Ramírez[1], A. Carrillo Parra[2]
[1]Instituto Politécnico Nacional, CIIDIR, Oaxaca, Mexico
[2]Facultad de Ciencias Forestales, Universidad Autónoma de Nuevo León, Linares, N.L. México

In this work, the numerical simulation of Mexican softwood (Pinus pesudostrobus) drying is presented by solving a physics-based model. The model was developed by considering the heat and mass transport and the representative elementary volume, which involves the solid, liquid and gas phases. We solved a system of partial differential equations by numerical factorization in COMSOL Multiphysics 3 ...

Modeling of Fluid Flow and Heat Transfer During a Steam-Thermolysis Process for Recycling Carbon Fiber Reinforced Polymer

A. Oliveira Nunes[1], Y. Soudais[1], R. Barna[1], A. Bounacer[1], Y. Yang[1]
[1]Centre RAPSODEE - Ecole des Mines d'Albi, Albi, France

Different types of technologies to recycle carbon fiber reinforced polymer (CFRP) waste have been studied, for example: pyrolysis, solvolysis and steam-thermolysis. The steam-thermolysis is a process that combines pyrolysis and superheated steam at atmospheric pressure to decompose the organic matrix of the composite. The waste is introduced into a bench-scale reactor heated at high temperatures ...

Modelling of the Oxygen Consumption of Cells in the Cell Culturing Platform - new

A. Niazi[1]
[1]School of Mechanical Engineering, University of Birmingham, Birmingham, United Kingdom

A device for monitoring the oxygen consumption of cells has been developed, which consists of two parts; a cell culturing platform (CCP) and an oxygen sensing chip. The CCP possesses inlet and outlet pipes to direct the fluid under the test to the cell culturing chamber through the inlet pipe and goes out of the outlet pipe after being partially consumed by the cells. In this abstract, the ...

Modeling of High-Temperature Ceramic Membranes for Oxygen Separation

J.M. Gozálvez-Zafrilla[1], J.M. Serra[2], and A. Santafé-Moros[1]

[1]Chemical and Nuclear Engineering Depart., Universidad Politécnica de Valencia, Valencia, Spain
[2]Instituto de Tecnología Química, Valencia, Spain

Oxygen transfer through ceramic membranes at high-temperature can substantially reduce costs respect to conventional separation methods. With the aim to improve the determination of the properties of the ceramic materials, a lab-scale permeation set-up was modeled using the Chemical Engineering Module of COMSOL Multiphysics®. The solution required the coupling of three domains. Gas flow was ...

Cluster Diameter Determination of Gas-solid Dispersed Particles in a Fluidized Bed Reactor

M. Das
Department of Biotechnology, PESIT, Bangalore, Karnataka, India

Clustering is a common hydrodynamic characteristic observed among suspended gas-solid particles in a fast fluidized bed (FFB) regime of a circulating fluidized bed (CFB) system. In this paper clustering behavior has been studied with Geldart group B particles like coal and iron ore in a circulating fluidized bed of diameter 0.1016 m and height 5.62 m. The cluster size when calculated from the ...

Drug Distribution in the Human Eye

L. Murtomäki[1], T. Kainuvaara[1]
[1]University of Helsinki, Helsinki, Finland

Drug therapy of the posterior segment of an eye is very challenging due to the difficult accessibility. Modern drugs often are large molecules, such as peptides, antibodies or oligonucleotides which are administrated, e.g. by intravitreous injections which requires clinical conditions. Computer modeling can be helpful in designing new and less invasive routes of drug administration. COMSOL is ...