Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Simulation of Manufacturing Process of Ceramic Matrix Composites

S. Yushanov, J. Crompton, and K. Koppenhoefer
ACES of Columbus, LLC, Columbus, OH, USA

Improved performance of aeroengines requires the development of new manufacturing technologies for ceramic matrix composites (CMCs). This has been simulated using COMSOL Multiphysics. Specialized simulation technologies have been developed to describe the infiltration of molten material into a ceramic perform. The physical phenomena considered in the analysis includes: unsaturated flow, ...

Acoustic Streaming Driven Mixing

N. Nama [1], P. Huang [1], F. Costanzo [1], T. J. Huang [1]
[1] Department of Engineering Science and Mechanics, Pennsylvania State University, PA, USA

Introduction - The ability to achieve rapid and homogeneous mixing at microscales is one of the essential requirements for various lab-on-a-chip applications [1]. The flow at microscales is characterized by low Reynolds number, resulting in laminar flow patterns. Thus, the mixing at microscales is dominated by slow diffusion process. Recently, an rapid and homogeneous mixing was demonstrated ...

Simulation Of A Hydrogen Permeation Test On A Multilayer Membrane

J. Bouhattate, E. Legrand, A. Oudriss, S. Frappart, J. Creus, and X. Feaugas
Laboratoire d’Etude des Matériaux en Milieu Agressif, LEMMA, Bat. Marie Curie, La Rochelle, France

To understand a metal susceptibility to Hydrogen Embrittlement (HE), it is important to quantify the diffusion of hydrogen through a metallic membrane. Electrochemical permeation tests are the most common methods for experimentally determining the diffusion coefficient of a metal. However the parameters directly accessible from experiments are the time required for a stream to be observed and ...

Finite Element Modeling of Freezing of Coffee Solution

C. Anandharamakrishnan, R. Gopirajah, and N. Chhanwal
Central Food Technological Research Institute
Mysore
Karnataka, India

Freeze-drying is a popular method of producing shelf stable particulate products and is of particular value for drying thermally sensitive materials (volatiles and biological based), which can be heat damaged by higher temperature methods, such as spray-drying. Porous structures are formed by the creation of ice crystals during the freezing stage, which subsequently sublime during the drying ...

Benchmark Model: Natural Convection of Water-Aluminum Oxide Nanofluids in a Square Cavity

M. Z. Saghir [1], A. Ahadi [1], A. A. Mohamad [2],
[1] Department of Mechanical Engineering, Ryerson University, Toronto, ON, Canada
[2] Department of Mechanical Engineering, University of Calgary, Calgary, AB, Canada

Nanofluids is a new class of fluid consisting of particles in a liquid. Different base liquid has been proposed and the most common one is water. The concentration of these particles can range from 0.1% to 5% or greater. Different numerical models have been proposed to solve this interesting problem. Some scheme assumed the fluid as a single fluid and other assumed as a two phase system ...

Simulation and Visualisation of Shielding Gas Flows During Wire-Arc Additive Manufacture

I. Bitharas [1], A. Moore [1],
[1] Heriot-Watt Univerisity, Edinburgh, UK

One of the challenges associated with the wire-arc additive manufacture (WAAM) of metals is to provide adequate inert gas shielding, not only for the molten pool, but also for the long reactive metal surface that follows it. For Ti-6Al-4V, it has been shown that increased levels of porosity, a direct consequence of air contamination, result in reduced structural properties, lower fatigue ...

Large Scale Outdoor Flammable & Toxic Gas Dispersion Modelling in Industrial Environments

A. Hallgarth[1], A. Zayer[1], A. Gatward[2], and J. Davies[2]

[1]Hazard Research & Risk Consultants Ltd, Aberystwyth, Wales, United Kingdom
[2]Independent Consultants, United Kingdom

HazRes has developed a gas discharge and dispersion model in COMSOL which takes into account the effects of localized wind profiles and turbulence generated by buildings, structures and terrain on the dispersion of gases in question. The main focus of this work is to develop and provide clients with more accurate prediction methods relative to industrial standard software tools in modeling ...

Numerical Simulations of Methane Aromatization with and without a Ceramic Hydrogen Separation Membrane

Z. Li[1], C. Kjølseth[2], S. Hernandez Morejudo[3], R. Haugsrud[1]
[1]University of Oslo, Department of Chemistry, FERMiO, Oslo, Norway
[2]Protia, Oslo, Norway
[3]University of Oslo, Department of Chemistry, InGAP, Oslo, Norway

Oxygen-free methane aromatization has been attracting growing attention due to a potential means for producing high valuable products such as aromatics and hydrogen. Many studies have been focused on catalysts screening and characterization, and elementary thermodynamic steps of the reaction. However, little attention has been paid to fluid dynamics which are important for an industrial ...

Simulation of Gravitational Instability During CO2 Absorption in a NaHCO3/Na2CO3 Solution

C. Wylock[1], A. Rednikov[1], B. Haut[1], P. Colinet[1]
[1]Université Libre de Bruxelles (ULB), Transfers, Interfaces and Processes (TIPs), Brussels, Belgium

This work deals with the modeling and the numerical simulation of the CO2 absorption, coupled with a chemical reaction, in an initially quiescent aqueous solution of sodium carbonate (Na2CO3) and bicarbonate (NaHCO3), inside a Hele-Shaw cell. In our Hele-Shaw cell, the liquid fills partially the gap between two parallel transparent Plexiglas plates. CO2 is forced to flow above the liquid in the ...

Modelling the Response of Microdialysis Probes in Glucose Concentration Measurement

J.M. Gozálvez-Zafrilla[1], A. Santafé-Moros[1], J.L. Díez-Ruano[2], J. Bondia[2]
[1]Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM) - Universitat Politècnica de Valencia, Valencia, Spain
[2]Instituto Universitario de Automática e Informática Industrial (AI2) - Universitat Politècnica de Valencia, Valencia, Spain

Microdialysis is a technique of continuous glucose monitoring in diabetic patients. In microdialysis, a saline serum is perfused into a microdialysis probe. Glucose pass from the plasmatic fluid through the porous membrane. The glucose concentration in the dialysate obtained is measured by an external analytical device. This preliminary work aimed to obtain a model to relate glucose ...