Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL News Magazine 2017

Model and App of Hydrophobic Meshes Used in Oil Spill Recovery

O. Silva [1], E. Coene [1], J. Molinero [1], B. Shafei [1]
[1] Amphos 21 Consulting S.L., Barcelona, Spain

Hydrophobic meshes are a new, promising technique for the recovery of spilled oil in the ocean. They allow to recover and store oil, while filtering it from the surrounding water. They are clean, efficient and can be used in continuously. These meshes have one drawback, however: if they are submerged too deep under the water level, the high pressure will cause presence of water in the recovered ...

Theoretical and Practical Approach for Transdermal Drug Delivery using Microneedle for Successful Skin Penetration

Jeevan J.Mahakud[1], Ziaur Reheman[2]
[1]Department of electronics and Communication engineering, Institute of technical education and research, Bhubaneswar, Odisha, India
[2]Department of electronics and instrumentation engineering, Institute of technical education and research, Bhubaneswar, Odisha, India

With the advent of MEMS, transdermal drug delivery has been developed to increase skin permeability for drug transport. Various microneedle structures have been analyzed theoretically as well as through simulation using COMSOL Multiphysics®. Then computational fluid dynamics has been presented in order to study the behavior of the fluid flow inside the microneedle cavity. In this report, the ...

Transport Phenomena in the Conversion of an Anaerobic Landfill into an Aerobic Landfill

H. Omar [1], S. Rohani [1],
[1] University of Western Ontario, London, ON, Canada

The world’s landfills are beginning to fill up due to the growing human population. Landfills require land and there will come a time when there will be no land to be used for landfills. A solution that is gaining attraction is the conversion of traditional “dry-tomb” landfills (used for storage) into bioreactor landfills. Dry-tomb landfills have many associated problems such as methane ...

Development of COMSOL-Based Applications for Heavy Oil Reservoir Modeling

S. Cambon [1], I. Bogdanov [1]
[1]Open & Experimental Center for Heavy Oil (CHLOE), University of Pau, Pau, France

The efficiency and environmental impact of oil production become a principal challenge of energy producing companies. The improvement of existing and development of novel methods are often feasible within either a “new” physical framework (from the viewpoint of oil reservoir applications) or a non-trivial combination of “known” phenomena. Last fifty years the dedicated reservoir simulators have ...

Transdermal Drug Delivery with Permeation Enhancer

A. Kermani [1], N. Elabbasi [1]
[1] Veryst Engineering, Needham, MA, USA

Transdermal drug delivery (TDD) is used to deliver drugs through the skin as an alternative to oral, intravascular, and subcutaneous routes. While there are many advantages to TDD, skin is a very effective barrier and provides resistance to drug delivery. To improve drug delivery through the skin, permeation enhancers are used. We developed an axisymmetric COMSOL Multiphysics® software model ...

Modeling of Packed Bed Reactors: Hydrogen Production by the Steam Reforming of Methane and Glycerol - new

A. Dixon[1], B. MacDonald[1], A. Olm[1]
[1]Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA

The conventional route to hydrogen production is by steam reforming of methane (MSR) in a multitubular packed bed. With the increasing use of biodiesel as a renewable fuel, interest has grown in steam reforming of the excess glycerol produced as a side product (GSR). We use COMSOL Multiphysics® software to model a tubular packed bed reactor, solving a single pellet model at each point. The ...

Three-Dimensional (3D) Modeling of Heat and Mass Transfer during Microwave Drying of Potatoes

H. Zhu[1][2], T. Gulati[2], A. K. Datta[2], K. Huang[1]
[1]Institute of Applied Electromagnetics, Sichuan University, Chengdu, China
[2]Department of Biological and Environment Engineering, Cornell University, Ithaca, NY, USA

Microwave drying of fruits and vegetables in a domestic oven has been found to result in large textural changes in the product such as puffing, crack formation and even burning due to the inhomogeneous heating of the microwaves. Microwave drying of potatoes is a complex interplay of mass, momentum and energy transport. Three phases are considered in the system: solid (skeleton), liquid (water) ...

Mechanistic Modeling of Non-Spherical Bacterial Attachment on Plant Surface Structures

A. Warning [1], A. K. Datta [1],
[1] Cornell University, Ithaca, NY, USA

The particle tracking model provided a deeper understanding to the experimental results. The model showed good agreement with experimental data for rotation, transport and attachment. In the attachment model, protrusions create low velocity, low shear regions increasing attachment while holes pull cells toward the surface and increase residence time on the surface increasing attachment rate.

An Analysis of Heat Conduction with Change of Phase with Application to the Solidification of Copper

J. Michalski[1], and E. Gutirrez-Miravete[2]
[1]Hamilton-Sundstrand
[2]Rensselaer at Hartford, Hartford, Connecticut, US

The goal of this study was to determine the possibility of using the finite element in COMSOL Multiphysics program to obtain a high accuracy solution to a moving boundary problem, specifically, the solidification of copper. A one-dimensional geometry in Cartesian coordinates was used to investigate the solidification of initially liquid copper from a chilled wall maintained at fixed temperature. ...

Migration of Mineral Oil Saturated and Aromatic Hydrocarbons(MOSH, MOAH) through Multi-Layered Packaging into Food

C. Kirse [1], F. Edel [1], H. Briesen [1],
[1] Chair of Process Systems Engineering, Technical University of Munich, Germany

Substances like Mineral Oil Saturated Hydrocarbons (MOSH) and Mineral Oil Aromatic Hydrocarbons (MOAH) are suspected to be carcinogenic. Furthermore, MOSH/MOAH migrate through the packaging into food stuff. This work aims at modelling, how much MOSH/MOAH migrates from the packaging into food to evaluate the exposure to toxic substances. The scope of the project is not to investigate one specific ...