Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Solving a Two-Scale Model for Vacuum Drying by Using COMSOL Multiphysics

S. Sandoval Torres[1]
[1]Instituto Politécnico Nacional, CIIDIR, Oaxaca, Mexico

Drying of porous materials is characterized by the invasion of a gaseous phase replacing the evaporating liquid phase. Vacuum drying is an advanced method applied to oakwood to diminish discoloration, so understand its physics is a very important task. In this work, a two-scale model is solved to simulate vacuum drying of oakwood. A two scale model describes the physics of wood-water relations ...

Simulation of Geomechanical Reservoir Behavior during SAGD Process Using COMSOL Multiphysics®

X. Gong[1], R. Wan[1]
[1]University of Calgary, Calgary, AB, Canada

THM (Thermo-Hydro-Mechanical) behavior of the reservoir during SAGD (Steam-Assistant-Gravity-Drainage) was studied through a proper constitutive modeling of the porous media. Specifically, a generalized density-stress-fabric dependent elasto-plastic model with stress-dilatancy and plastic damage as main ingredients was implemented into COMSOL Multiphysics®, to model geomechanical behavior during ...

Transport Phenomena and Shrinkage Modeling During Convective Drying of Vegetables

S. Curcio[1] and M. Aversa[1]
[1]Department of Engineering Modeling, University of Calabria, Arcavacata di Rende, CS, Italy

The aim of the present work is the formulation of a theoretical model describing the transport phenomena involved in food drying process. The attention has been focused on the simultaneous transfer of momentum, heat and mass occurring in a convective drier where hot dry air flows, in turbulent conditions, around the food sample. The proposed model does not rely on the specification of ...

激光熔覆过程中的传热传质研究

甘政涛 [1],
[1] 中国科学院力学研究所,北京,中国

基于 Level-Set 界面跟踪方法建立了激光熔覆过程的三维瞬态数值模型,研究了瞬态熔化和凝固过程中传热传质的演化规律。该模型使用 Level-Set 方法跟踪熔池气/液界面,采用焓-多孔度(enthalpy-porosity)方法得到了固/液界面之间的糊状区,并考虑了质量添加、材料熔化/凝固、热毛细效应(Marangoni效应)、浮力效应、活性元素质量传输等对熔池流动和界面的影响。通过该模型,具体分析了质量添加、力和界面平衡条件对熔池气/液界面的影响,以及由熔池温度/浓度分布引起的热毛细效应、金属材料的熔/凝过程和熔池流动形式对熔池固/液界面的影响。结果表明:熔池的气/液界面主要由力平衡条件决定,截面近似为圆弧型,其尺寸与单位时间的质量添加量相关。熔池的固/液形态由于熔池的表面温度梯度和表面活性元素含量共同引起的熔池流动方向和速度的变化,出现三种不同的类型,分别为下凹型(熔池内流) ...

Development of COMSOL-Based Applications for Heavy Oil Reservoir Modeling

S. Cambon [1], I. Bogdanov [1]
[1]Open & Experimental Center for Heavy Oil (CHLOE), University of Pau, Pau, France

The efficiency and environmental impact of oil production become a principal challenge of energy producing companies. The improvement of existing and development of novel methods are often feasible within either a “new” physical framework (from the viewpoint of oil reservoir applications) or a non-trivial combination of “known” phenomena. Last fifty years the dedicated reservoir simulators have ...

Comparison of Industrial Agitation for Batch Reacting Vessel Mixing in Bioethanol Fermentation

H. Rana [1],
[1] Loughborough University, United Kingdom

This paper presents the investigation into the phenomena during batch reactor vessel mixing comparing agitation equipment; the Rushton turbine and the Marine propeller; in the production of bioethanol by yeast fermentation. The key factors addressed in selecting equipment were fluid vector flow, energy dissipation resulting in shear damage to yeast cells, agitation power consumption, critical ...

Theoretical and Practical Approach for Transdermal Drug Delivery using Microneedle for Successful Skin Penetration

Jeevan J.Mahakud[1], Ziaur Reheman[2]
[1]Department of electronics and Communication engineering, Institute of technical education and research, Bhubaneswar, Odisha, India
[2]Department of electronics and instrumentation engineering, Institute of technical education and research, Bhubaneswar, Odisha, India

With the advent of MEMS, transdermal drug delivery has been developed to increase skin permeability for drug transport. Various microneedle structures have been analyzed theoretically as well as through simulation using COMSOL Multiphysics®. Then computational fluid dynamics has been presented in order to study the behavior of the fluid flow inside the microneedle cavity. In this report, the ...

Modeling Drug Release from Materials Based on Electrospun Nanofibers

P. Nakielski[1], T. Kowalczyk[1], T.A. Kowalewski[1]
[1]Institute of Fundamental Technological Research Polish Academy of Sciences, Warsaw, Poland

Comprehensive studies of drug transport in nanofibres based mats have been performed to predict drug release kinetics. The paper presents our approach to analyze the impact of fibers arrangement, one of the parameters varied in our parallel experimental studies. COMSOL Multiphysics® has been used to assess the impact of the various purposed arrangements of fibers within the mat. Drug release ...

Multiphysics: Fluid Mixing and Brine Pool Formation for Economic Geology Applications - new

C. Schardt[1]
[1]University of Minnesota-Duluth, Duluth, MN, USA

Significant submarine mineral deposits form when hot, metal-laden, saline fluids emerge onto the seafloor and mix with ambient seawater. Resulting density changes of fluid mixtures can trigger fluid buoyancy reversals, brine pool formation, and metal accumulation (Figure 1). While some of these processes are known from experiments, the inception, development, and physical-chemical processes ...

Transdermal Drug Delivery with Permeation Enhancer

A. Kermani [1], N. Elabbasi [1]
[1] Veryst Engineering, Needham, MA, USA

Transdermal drug delivery (TDD) is used to deliver drugs through the skin as an alternative to oral, intravascular, and subcutaneous routes. While there are many advantages to TDD, skin is a very effective barrier and provides resistance to drug delivery. To improve drug delivery through the skin, permeation enhancers are used. We developed an axisymmetric COMSOL Multiphysics® software model ...