Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Fatigue Damage Evaluation on Mechanical Components under Multiaxial Loadings

R. Tovo[1] and S. Capetta[1]
[1]Dipartimento di Ingegneria, Università degli Studi di Ferrara, Ferrara, Italy

This paper is concerned with the fatigue behavior of complex, three-dimensional, stress concentrations under multiaxial loadings. Starting from the stress field obtained from a linear elastic analysis and taking advantage of the so-called implicit gradient approximation, an effective stress index connected with the material strength is calculated. Besides, this work summarizes a first ...

Numerical Modelling Of Moisture Related Mechanical Stress In Wooden Cylindrical Objects Using COMSOL: A Comparative Benchmark

H. Schellen, and J. Van Schijndel
Eindhoven University of Technology, Eindhoven, The Netherlands

For preservation of artefacts in a museum the indoor climate is often restricted to a very narrow interval for temperature, but most of all for relative humidity. In old buildings the museum conditions of artefacts, e.g. near cold walls, mostly are not in line with museum recommendations.To have an impression of indoor museum climates in old buildings, a large number of case studies were carried ...

Thermal Stress in a Zero Thermal Expansion Composite

C. Romao, and M. White
Dept. of Chemistry and Institute for Research in Materials
Dalhousie University
Halifax, NS

A series of 2-D finite element models of a ZrO2-ZrW2O8 composite system were created in COMSOL Multiphysics to study the effect of pores between the matrix (ZrO2) and filler (ZrW2O8) materials. Pores were modeled as ellipses concentric with the filler particles. Seventeen model geometries of varying microstructure were studied in order to determine correlations between microstructural ...

Fretting Wear and Fatigue Analysis of a Modular Implant for Total Hip Replacement

M.S. Yeoman[1], A. Cizinauskas[1], D. Rangaswamy[1]
[1]Continuum Blue, Tredomen, Ystrad Mynach, United Kingdom

Modular orthopaedic devices are a feature of total joint replacements today. These modular orthopaedic devices allowing surgeons to choose from a variety of available implant sizes, designs & material options for the procedure required and the patient specific requirements. However, even though this allows for greater scope of implant construction, if the various components of the modular design ...

Modeling of the Photo-Mechanical Response of Liquid-Crystal Elastomers

G. Cerretti[1], J.-C. Gomez-Lavocat[1][2], K. Vynck[1], D.S. Wiersma[1][3]
[1]European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy
[2]The Institute of Photonic Sciences (ICFO), Mediterranean Technology Park, Castelldefels, Spain
[3]Istituto Nazionale di Ottica (INO), National Research Council (CNR), Florence, Italy

Liquid-crystal elastomers (LCEs) [1] have attracted a great attention in recent years due to their high potential in a wide range of applications, from microfluidics components [2] to artificial muscles [3]. The photo-mechanical response of LCEs is due to their constitutive photo-sensitive molecules, which change shape when absorbing part of the incident light. These microscopic deformations can ...

Evaluation of Low-Cycle-Fatigue Life of Solder Joints in Surface Mounting Power Devices by Finite Element Modeling

N. Delmonte[1], F. Giuliani[1], M. Bernardoni[2], P. Cova[1]
[1]Dipartimento di Ingegneria dell'Informazione, Università degli Studi di Parma, Parma, Italy
[2]CDTR - Centre for Device Thermography and Reliability, H. H. Wills Dept. of Physics, University of Bristol, Bristol, United Kingdom

The reliability of solder joints [1,2] is one of the key factors in the determination of the reliability of the high power density electronic converters, being the solder joints both the mechanical, the electrical, and often the thermal connections between the electronic component and the board in which the component is placed. The main mechanism by which solder joints are damaged is thermal ...

Modeling and Experimental Verification of the Power Transfer and Thermal Characteristics of Piezoelectric Transformers Subjected to Combined Mechanical and Electrical Loading

S. Tuncdemir[1], W.M. Bradley[2]
[1]Solid State Ceramics, Williamsport, PA, USA
[2]QorTek, Williamsport, PA, USA

A piezoelectric transformer allows purely mechanical transfer and scaling of electrical energy via simultaneous utilization of both the direct and converse piezoelectric effects. This mechanical energy transfer enables a wide range of functional differences from typical magnetic-based electrical power transformers. Comparing to their electromagnetic counterparts, piezoelectric transformers are ...

VLSI Layout Based Design Optimization of a Piezoresistive MEMS Pressure Sensors using COMSOL Multiphysics

R. Komaragiri[1], Sarath. S.[1], N. Kattabomman[1]
[1]NIT Calicut, Kozhikode, Kerala

This paper focuses on the diaphragm design and optimization of a piezoresistive Micro Electro Mechanical System (MEMS) pressure sensor by considering Very Large Scale Integration (VLSI) layout schemes. The aim of these studies is to find an optimal diaphragm shape by Finite Element Method (FEM) using COMSOL®, which is most suitable for VLSI layout. Optimal diaphragm shape is a diaphragm shape ...

COMSOL Multiphysics® Simulations of Cracking in Point Loaded Masonry with Randomly Distributed Material Properties

A.T. Vermeltfoort[1], A.W.M. van Schijndel[1]
[1]Eindhoven University of Technology, Eindhoven, The Netherlands

This paper describes COMSOL Multiphysics® simulations of the stress and crack development in the area where a masonry wall supports a floor. In these simulations one of the main material properties of calcium silicate, its E-value, was assigned randomly to the finite elements of the modeled specimen. Calcium silicate is a frequently used building material with a relatively brittle fracture ...

Computing the Influence Functions of an Adaptive Optics Large Deformable Mirror: the Numerical Method and the Experimental Data

R. Biasi[1], D. Gallieni[2], A. Riccardi[3], R. Briguglio[3], C. Del Vecchio[3]
[1]Microgate Srl, Bolzano, Italy
[2]ADS International Srl, Valmadrera (LC), Italy
[3]National Institute for Astrophysics - Arcetri Astrophysical Observatory - Firenze, Italy

Adaptive Optics units are mounted on many large telescopes, thus enabling diffraction-limited astronomical images through compensation of the effects of atmospheric turbulence. The design of the control system of the Deformable Mirror includes a feed-forward block, aimed for increasing the efficiency of the control loop. Such a block is based on the stiffness matrix of the DM, defined as the ...