Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Extraction of Electrical Equivalent Circuit of One Port SAW Resonator Using FEM-based Simulation

A. K. Namdeo [1], H. B. Nemade [1],
[1] Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India

The paper presents a method of extraction of electrical equivalent circuit of a one port surface acoustic wave (SAW) resonator from the results of simulation based on finite element method (FEM) using COMSOL Multiphysics software. A one port SAW resonator consists of large number of periodic interdigital transducer (IDT) electrodes fabricated on the surface of a piezoelectric substrate. A ...

Design of Solar Thermal Dryers for 24-hour Food Drying Processes

F. S. Alleyne [1], R. R. Milczarek [1],
[1] Healthy Processed Foods Research Unit, U.S. Department of Agriculture, Albany, CA, USA

Solar drying is a ubiquitous method that has been adopted for many years as a food preservation method. Most of the published articles in the literature provide insight on the performance of solar dryers in service but little information on the dryer construction material selection process or material attributes that allow them to be selected as candidates in solar dryer designs. 1–7 ...

3D Simulation of Laser Interstitial Thermal Therapy in the Treatment of Brain Tumors

M. Nour [1], A. Lakhssassi [1], E. Kengne [1], M. Bougataya [1],
[1] Université du Québec en Outaouais, Gatineau, QC, Canada

Abstract: Due to the restriction of the number of probes that a patient can tolerate, and the inaccurate information provided by the invasive temperature measurements, which provide information only at discrete points, a mathematical model simulation is more effective to help doctors in planning their thermal treatment doses. This will maximize therapeutic effects while minimizing side effects. ...

Lennard-Jones Potential Determination via the Time-Dependent Schrödinger Equation

D. Nguemalieu. Kouetcha [1], H. Ramezani [1][2], N. Cohaut [1],
[1] Université d’ Orléans, ICMN, UMR CNRS, Orléans France
[2] Ecole Polytechnique de l' Université d’ Orléans, Orléans, France

The accurate atomic potential determination is an essential task in the molecular simulations, e.g. Grand Canonical Monte Carlo (GCMC). The ab initio simulations using the quantum mechanics would of great interest in the computational physical chemistry. The numerical simulation of the adsorption phenomenon requires knowing the interactions parameters between the atoms that make up the systems ...

Ammonia Removal From Water by a Liquid-Liquid Membrane Contactor Under a Closed Loop Regime

E. Licon[1], S. Casas[1], A. Alcaraz[1], J.L. Cortina[1], C. Valderrama[1]
[1]Universitat Politécnica de Catalunya, Barcelona, Spain

Ammonia separation from water by membrane contactor was simulated on transient state and compared with experimental data. Aqueous low concentrated solution of ammonium with high pH has been pumped inside the hydrophobic hollow fibers, acid solution in the outside part. The system is in closed loop configuration. In order to simulate the separation process, equations were developed considering ...

Model Order Reduction using COMSOL Multiphysics® Software - A Compact Model of a Wireless Power Transfer System

J. Pico [1], T. Bechtold [1], D. Hohlfeld [1],
[1] University of Rostock, Rostock, Germany

This work presents the application of mathematical methods of model order reduction (MOR) for automatic generation of highly accurate, compact models for wireless power transfer systems. We apply a block two-sided second order Arnoldi algorithm to automatically compute a compact model, which is highly accurate, but only demands several orders of magnitude smaller CPU time and can be used for the ...

Modeling Conventional Swing of a Cricket Ball

R. Latchman [1], A. Pooransingh [1],
[1] University of the West Indies - St. Augustine, St. Augustine, Trinidad and Tobago

Conventional swing is one phenomenon which a bowler uses to gain an advantage over the batsman. This study involved simulating conventional swing in the CFD Module of COMSOL Multiphysics® software and comparing the simulated results with experimental results of previous researchers. The variation in the side and drag forces on the ball were investigated by varying the velocity, seam angle and ...

Novel Approach for Teaching Microchemical Systems Analysis to Chemical Engineering Students Using Interactive Graphical User Interfaces (GUIs)

A. Nagaraj [1], P. L. Mills [1],
[1] Department of Chemical and Natural Gas Engineering, Texas A&M University - Kingsville, Kingsville, TX, USA

Chemicals are an integrated part of our daily life. While chemicals are significant contributor to a nation’s economy, sound management of chemical production is essential for environmentally friendly operation without maximizing operational costs. Next generation technologies must be developed that potentially change the chemical plants and process engineering giving rise to safe, compact, ...

Acoustic Wave Crack Detection: A First Principles Approach

R. W. Pryor [1],
[1] Pryor Knowledge Systems, Inc., Bloomfield Hills, MI, USA

Crack detection is and has been an active field of exploration, both theoretical and applied for a number of years. It is the belief of this author that the concepts presented herein explore a new methodology for the modeling and the detection of cracks and families of cracks in crystalline solids, polycrystalline solids and high viscosity amorphous materials (glasses). In the case of the ...

Simulation of a New PZT Energy Harvester with a Lower Resonance Frequency Using COMSOL Multiphysics® - new

H. Elbahr[1], T. Ali[1,2], A. Badawi[1], S. Sedky[1]
[1]Zewail City of Science and Technology - Cairo, Cairo, Egypt
[2]Cairo University, Cairo, Egypt

Energy harvesting from environmental vibration nowadays is feasible because of natural oscillations like that caused by air or liquid flow and by exhalation or the heartbeat of a human body. This vibration frequency is typically low (in order of less than 1 kHz). Accordingly, low-frequency vibration based energy harvesting systems are an important research topic; these systems can be used for ...