Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

COMSOL Multiphysics Models for Teaching Chemical Engineering Fundamentals: Absorption Column Models and Illustration of the Two-Film Theory of Mass Transfer

W. Clark
Chemical Engineering Department, Worcester Polytechnic Institute, Worcester, MA, USA

COMSOL® models have been developed for teaching gas absorption fundamentals. Model results are compared to environmentally significant experimental results for removing CO2 and SO2 from air using water as solvent. For concentrated gas mixtures, the models are shown to be equivalent to but easier to use than the traditional graphical integration method and to a solution method developed with ...

Design Optimization of an Electronic Component with an Evolutionary Algorithm Using a MATLAB-COMSOL Based Model

E. Pelster, and D. Wenger
Wenger Engineering GmbH
Ulm, Deutschland

Electric construction components exposed to alternating high voltage have to withstand a significant amount of thermal loads and, resulting from the changes in Temperature , structural stresses. In order to achieve minimization of these loads, optimizing the geometry can be a helpful tool in the design process. In this study COMSOL is used to predict thermal and mechanical loads on a high ...

Definition of Optimization Problem for Electromagnetic Linear Actuator

P. Piskur[1], W. Tarnowski[1], and K. Just[1]

[1]Koszalin Technical University, Koszalin, Poland

In this paper a poly-optimization of the design of the electromechanical actuator is presented. The shape of the actuator is defined by the decision variables. The number of decision variables under consideration is up to ten but in the next step while the multi-coils system will be analyzed the number of decision variables will increase up to hundred, so the genetic algorithm has been used. The ...

Optimum Design for Magneto-Rheological Brake Using COMSOL Multiphysics® Software

J. Thanikachalam[1], P. Nagaraj[1]
[1]Mepco Schlenk Engineering College, Sivakasi, Tamil Nadu, India

The Automotive industry has now become a technology of “Drive by Wire”. This technology is used to replace the conventional mechanical system by electromechanical system which is able to perform the same tasks faster, more reliably and accurately. The problems with the traditional braking systems are unreliable at high speeds, long respond time, more brake pad wear, high temperature operating ...

3D COMSOL Multiphysics® Model of a Plate Heat Exchanger to Support a Laboratory Teaching Environment - new

N. Medeiros[1], W. Clark[1]
[1]Worcester Polytechnic Institute, Worcester, MA, USA

Chemical engineering students and practitioners need an understanding of fluid flow and heat transfer inside heat exchangers. Because the flow within plate heat exchangers is difficult to visualize, we developed COMSOL Multiphysics® simulations of plate heat exchangers for students to study alongside a physical heat exchanger in a laboratory setting. Simulative experiments allow students to ...

Nondestructive Testing of Composites Using Model Based Design

E. Nesvijski[1]

There is a practical interest among composite materials manufacturers to high-speed accurate non-destructive evaluation (NDE) technology for voids inspection when these voids are natural components of such complex structures like resin insulated layer of double-sided copper-clad laminates. Model based design (MBD) of NDE system is one of principal solutions for voids inspection in such ...

Simulation of GMR in Granular C/Co Nanoparticles in Agarose - new

P. Hainke[1], D. Kappe[1], A. Hütten[1]
[1]Universität Bielefeld, Bielefeld, Germany

As the importance of nanoparticles is growing more and more, controlling and understanding the properties of nanoparticles became a focus of research. In this field Meyer at al. [1] are researching the GMR effect in granular gels to develop magnetoresistive sensors. The GMR in granular gels is simulated to investigate the physical processes in those systems. As soon as the models coincide with ...

Parallel Performance Studies for COMSOL Multiphysics Using Scripting and Batch Processing

N. Petra[1], and M.K. Gobbert[1]

[1]Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore, Maryland, USA

The graphical user interface (GUI) of COMSOL Multiphysics offers an effective environment to get started solving problems. For reproducibility of the results, it is often desirable to explore the script-based modeling capabilities of COMSOL with MATLAB. There are also potential benefits of running COMSOL in parallel, specifically by running several computational threads in shared-memory ...

Solving Distributed Optimal Control Problems for the Unsteady Burgers Equation in COMSOL Multiphysics®

F. Yilmaz[1] and B. Karasözen[2]

[1]Department of Mathematics, Gazi University, Ankara, Turkey
[2]Department of Mathematics and Institute of Applied Mathematics, Middle East Technical University, Ankara, Turkey

We use COMSOL Multiphysics® for solving distributed optimal control of un- steady Burgers equation without constraints and with pointwise control constraints. Using the first order optimality conditions, we apply projection and semi-smooth Newton methods for solving the optimality system. We have applied the standard approach by integrating the state equation forward in time and the ad- joint ...

ComsolGrid – A Framework For Performing Large-Scale Parameter Studies Using COMSOL Multiphysics and Berkeley Open Infrastructure for Network Computing (BOINC)

C.B. Ries, and C. Schröder
University of Applied Sciences Bielefeld, Germany

BOINC (Berkeley Open Infrastructure for Network Computing) is an open-source framework for solving large-scale and complex computational problems by means of public resource computing (PRC). In contrast to massive parallel computing, PRC applications are distributed onto a large number of heterogeneous client computers connected by the Internet where each computer is assigned an individual task ...