Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Impedance Matching of Tag Antenna to Maximise RFID Read Ranges & Optimising a Tag Antenna Design for a Particular Application - new

M. Yeoman[1], M. O'Neill[2]
[1]Continuum Blue Ltd., Ystrad Mynach, UK
[2]Tumbling Dice Ltd., Newcastle, UK

RFID tags are ever increasing in their daily use, from the monitoring of components, the tracking of produce during processing & production, as well as being used in much of the touch-less technologies seen today. With this technology, there has been the ever increasing need to reduce the power required to activate the RFID tag, while maximizing the read range in certain applications. In ...

Comparative Study of an Open Waveguide.Application to Deconvolution of a Magnetic Probe in Near-Field Zone

A. Saghir, J.W. Tao, and C. Avram
INP, Laplace site Enseeiht, Toulouse, France

We present here our work on deconvolution of a magnetic probe to mesure electromagnetic emissions in near-field zone. To achieve this work,we have chosen a rectangular waveguide (WR90) as a radiating structure.Theoritical near-field is simulated using a FEM software (COMSOL) and also obtained by using a program based on transverse operator method (TOM), that lead to a very good field ...

Plasmonic Waveguide Analysis

K. C. Koppenhoefer [1], S. Yushanov [1], J. S. Crompton [1],
[1] AltaSim Technologies, Columbus, OH, USA

Surface Plasmons (SP) or Surface Plasmon Polaritons (SPP) are electromagnetic excitations that propagate at the interface between a dielectric and a conductor, and are evanescently confined in the perpendicular direction to the propagation. They arise via coupling of the electromagnetic field to oscillations of the conductor’s electron plasma and are characterized in terms of dispersion and ...

Simulating Plasmon Effects in Nano-Structured OLED Cathodes Using COMSOL Multiphysics® Software

L. Wang [1],
[1] Konica Minolta Laboratory USA, Inc., San Mateo, CA, USA

Organic light emitting diode (OLED) is an emerging technology for next-generation flat panel display and solid-state area lighting thanks to its many advantages such as light weight, low operating voltage, and flexibility, etc. A typical OLED has a multilayer structure that includes a glass or plastic substrate, an anode (ITO), a hole transport layer (HTL), an emitting layer (EML), an electron ...


刘小璐 [1], 汪滢莹 [1], 田翠萍 [1],
[1] 北京工业大学, 北京,中国

空芯光子晶体光纤(HC-PCFs)具有不同于传统光纤的带隙导光机制,在光通信系统、高功率激光器、工业制造和生物医疗等许多领域有广阔的应用前景。随着光纤拉制技术的不断进步,不同纤芯结构的 HC-PCFs 出现并带来了更好的光传输特性(图1)。通过设计新的纤芯形状,并运用 COMSOL Multiphysics® 中的 RF 模块进行仿真,可以研究各种纤芯 HC-PCFs 的模式(图2)、泄漏损耗(图3)和波导色散(图4)等特性。结果表明:设计的内凹圆化形纤芯 HC-PCFs 比传统的正十二边形纤芯 HC-PCFs 有更低的泄漏损耗和波导色散,而设计的内凹直线形纤芯 HC-PCFs 有很低的泄漏损耗和大的波导色散。新设计的纤芯结构未来可用于大容量光通信 ...

Surface Plasmon Resonance Sensors: Optimization of Diffraction Grating and Prism Couplers

W. Raja[1], A. Alabastri[1], S. Tuccio[1], R. Proietti Zaccaria[1]
[1]Department of Nanostructures, Istituto Italiano di Tecnologia, Genova, Italy

Surface plasmon resonance (SPR) sensors proved themselves as a promising device for many kinds of applications such as optical biosensing, binding constant determinationor nanofilm thickness measurements. Here we simulate using COMSOL Multiphysics® the light-polaritons coupling for the two most commonly used SPR setups: Attenuated total reflection (Kretschmann configuration) and diffraction ...

Periodically Poled Lithium Niobate Waveguides for Quantum Frequency Conversion - new

J. Toney[1], J. Retz[1], V. Stenger[1], A. Pollick[1], P. Pontius[1], S. Sriram[1]
[1]SRICO, Inc., Columbus, OH, USA

This paper presents techniques for modeling annealed proton exchange (APE) and reverse proton exchange (RPE) waveguides in periodically poled lithium niobate for application to optical frequency conversion. A combination of time-dependent diffusion modeling and electromagnetic mode analysis using the RF module are used to predict the relationship between the poling period and the second harmonic ...

Simulation of Vector Mode Grating Coupler Interfaces for Integrated Optics

C. T. Nadovich [1],
[1] Lafayette College, Easton, PA, USA

The use of grating couplers to couple conventionally phased and polarized light near vertically in and out of optical slab or film waveguides [1] represents an attractive method to interface optical fiber to photonic ICs. Previously developed grating coupler designs use transversely uniform grating structures matched to conventional scalar fiber modes. The performance of these geometries can be ...

Nonlinear Optics in Plasmonic Nanostructures

G. Bachelier [1], L. Olgeirsson [1], S. Waterman [2], J. Sharma [3], E. Dujardin [3], A. Bouhelier [4], S. Huant [1]
[1] Institut Néel, CNRS - Joseph Fourier University, Grenoble, France
[2] Imperial College, London, England
[3] CEMES, CNRS, Toulouse, France
[4] LICB, CNRS – Bourgogne University, Dijon, France

The unique optical properties of plasmon resonances in noble metal nanoparticles have been extensively investigated owing to their ability to enhance the electric field amplitude but also to tailor its spectral and spatial distribution. Among all application domains, nonlinear optics play a singular role since the efficiency of the underlying physical processes are driven by specific symmetry ...

Au Nanoparticle-based Plasmonic Enhancement of Photocurrent in Gallium Nitride Metal-Semiconductor-Metal (MSM) Ultraviolet Photodetectors

Arjun Shetty[1], K J Vinoy[1], S B Krupanidhi[2]
[1]Electrical Communication Engineering, Indian Institute of Science, Bangalore, India
[2]Materials Research Centre, Indian Institute of Science, Bangalore, India

III-nitride semiconductors and gallium nitride in particular have recently become increasingly important for optoelectronic applications like LEDs, solar cells and photodetectors due to their attractive properties like wide and direct bandgap, high power handling capability and high breakdown field. Nanoplasmonic enhancement of photodetectors by scattering effects has been well known and is ...