Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Effect of Antenna Deformation on Performance

J. Persad [1], S. Rocke [1], A. Abdool [1], D. Ringis [1],
[1] Department of Electrical and Computer Engineering, University of the West Indies, St. Augustine, Trinidad and Tobago

Ubiquitous, unobtrusive wearable computing has tremendous potential for impacting many applications including medical, personal entertainment and surveillance. Advances in the underlying technology have allowed for consistent reduction in the size and weight of emerging solutions, with increasing subsystem integration. A key component for the realisation of these systems is the short and long ...

Universal Dielectric Response of Atmospheric Ice Using COMSOL Multiphysics®

U.N. Mughal[1], M.S. Virk[1], K. Zaman[1]
[1]Narvik University College, Narvik, Norway

Heterogeneous materials with different phases, are conductive and insulating (dielectric), and are physically present in different natural materials as e.g. atmospheric ice. Jonscher’s proposed ‘universal dielectric response’ is not sufficient for such materials, as it only reflects conductivity as a nonlinear function of frequency, whereas at lower temperatures dipolar vibrations are also very ...

Influence of the Excitation Frequency Increase up to 140 MHz on the VHF-PECVD Technology

S. Leszczynski[1], B. Leszczynska[1], M. Albert[1], J.W. Bartha[1], U. Stephan[2], J. Kuske[2]
[1]Dresden University of Technology, Semiconductor and Microsystems Technology Laboratory, Dresden, Germany
[2]Forschungs- und Applikationslabor Plasmatechnik GmbH, Dresden, Germany

The plasma enhanced chemical vapor deposition process with a linear plasma source and the frequency range up to 140 MHz developed by Dresden University of Technology and FAP GmbH Dresden enables a fabrication of thin film silicon layers at very high deposition rates. However, an increase of the plasma frequency reduces the electromagnetic wavelength. Therefore, the electric field distribution is ...

Microwave Interstitial Tumor Ablation: New Modality for Treatment of Liver Cancer

S. Maini[1] , A. Marwaha[1] , and S. Marwaha[1]

[1] Department of Electrical & Instrumentation Engineering, SLIET , Longowal (Deemed University), Punjab

Hyperthermia is newly back in the interest of both, clinical and research oncologists, because of its properties to directly produce permanent damages of the treated tumors and to elicit important immunological responses against cancer cells by changing their immunogenicity.  Microwave ablation is used in the treatment of primary and secondary tumors of the liver.  Microwave antennas ...

Surface Plasmon Resonance Dependence on Size in Metallic Nano-Spheres - new

K. Kluczyk[1], W. Jacak[1]
[1]Institute of Physics, Wrocław University of Technology, Wrocław, Poland

Surface plasmon resonance in metallic nanoparticles is highly and shape dependent, which enables varius applications in photovoltaics, photonics, sensing and even medicine. Particularly we observe redshift in plasmon resonance with increasing nanoparticle size. We investigate nanoparticle size influence on plasmon resonance within theoretical and numerical approach and compare results with ...

Finite Element Analysis of Curved Cone Corrugated Ground Plane Conical Antenna

R. Sharma, and A. Marwaha
SLIET, Longowal, Sangrur
Punjab, India

Curved cone corrugated ground plane conical antenna has been designed and analyzed using Finite Element Method. In this paper, we introduce a novel Curved cone corrugated ground plane conical antenna for ultra-wideband (UWB) applications. The antenna is composed of curved cone with narrow corrugation on finite ground plane and fed by a 50? coaxial cable. The designed antenna operates over ...

Microwave Coagulation Therapy Using Microwave Antenna

M. Surita[1], M. Patel[2], and S. Marwaha[1]
[1] Department of Electrical & Instrumentation Engineering, SLIET , Longowal (Deemed University), Punjab
[2] ABES Engineering College, Department of Electronics and Communication Engineering, Ghaziabad

The purpose of this paper is to illustrate the microwave coagulation therapy (MCT) that can be used mainly for the treatment of hepatocellular carcinoma. In this treatment invasive technique are used in which thin microwave coaxial antenna is inserted into the tumor and the microwave energy heats up the tumor to produce the coagulated region including the cancer cells. We have to heat the ...

Design Of Magnetoplasmonic Resonant Nanoantennas For Biosensing Applications

M.E. Mezeme, and C. Brosseau
Université Européenne de Bretagne–Université de Bretagne Occidentale, Brest, France

The study of plasmonic structures continues to be at the forefront of research in nanotechnology and condensed matter physics. Here, we present a numerical model we have created and verified to characterize the frequency dependence of the effective magnetic permeability and permittivity of a core-shell (CS) nanostructure composed of a magnetic core and a plasmonic shell with well-controlled ...

Determination of the Optical Properties of Individual Gold Nanorods through Numerical Modeling and Experiment

Y. Davletshin[1], J.C. Kumaradas[1]
[1]Ryerson University, Toronto, ON, Canada

The optical scattering and absorption of gold nanorods (GNRs) depends on its size, shape, and surroundings. This dependence is due to both intrinsic and extrinsic effects. A good understanding of this dependence is needed for applications of GNRs in photo-thermal therapy, optical and opto-acoustic imaging, biosensing, and other photonic areas. Extrinsic effects are caused by the production of ...

Mode Conversion Losses in a Smooth Wall Circular Waveguide

R. Kumar[1], H. B. Pandya [1], S. Danani [1], P. Vasu [1], V. Kumar[1]
[1]ITER-India, Gandhinagar, Gujarat, India

The ITER-ECE transmission lines consist of smooth-wall circular waveguides, including miter bends and other components. The performance of the TL is crucial to ensuring that the requirements for the diagnostic to measure the plasma parameters are met. COMSOL Multiphysics® has a finite element method with a built-in Eigenmode matrix solver. The accuracy of COMSOL solutions depends on the size of ...