Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.
COMSOL News Magazine 2017

Mathematical Modeling of Zig-Zag Traveling-Wave Electro-Osmotic Micropumps

J. Hrdlicka[1], P. Cervenka[1], M. Pribyl[1], and D. Snita[1]
[1]Department of Chemical Engineering, Institute of Chemical Technology Prague, Prague, Czech Republic

In this paper we present results of the mathematical modeling of AC electroosmotic micropumps. Unlike others we use the full dynamic description, instead of the linearized model. Skewed hybrid discretization meshes are employed in order to accurately capture the main features of the studied system. Also, we introduce zig-zag electrode arrangements for traveling-wave electroosmotic micropumps. ...

Analysis of Electromagnetic Propagation for Evaluating the Dimensions of a Large Lossy Medium

A. Pellegrini[1] and F. Costa[1]
[1]ALTRAN Italia, Pisa, Italy

In this paper the propagation of a plane wave in a large lossy medium is presented. The investigated geometry consists in a wedgeshaped lossy dielectric embedded in a lossy material with different electromagnetic properties. The aim of the study is to determine the feasibility of a radar technique for measuring the length of the dielectric wedge. In order to address this problem and to evaluate ...

Streamer Propagation in a Point-to-Plane Geometry

M. Quast[1] and N.R. Lalic[1]
[1]Gunytronic GmbH, St Valentin, Germany

Corona discharge is used in several applications such as surface treatment of polymers, photocopying or dust removal in air conditioning. Streamer formation is undesirable for most of these applications. Therefore, several studies have been dedicated to investigate the formation and propagation of streamers, which are still not fully understood. The most suitable models to describe streamers are ...

A Study of Seismic Robot Actuation Using COMSOL Multiphysics

S.L. Firebaugh, E.A. Leckie, J.A. Piepmeier, and J.A. Burkhardt
United States Naval Academy, Annapolis, Maryland, USA

Microrobotics has promising applications in microsurgery and microassembly. A challenge in these systems is interfacing with the robot. This project explores crawling robots that are powered and controlled through a global mechanical vibration field. By controlling the frequencies present in the vibration field, the user can then steer the robot. The “robot” has a rectangular body with three ...

Design of Novel Recirculation System for Slow Reacting Assays in Microfluidic Domain

N.N. Sharma, and A. Tekawade
Mechanical Engineering Group, Birla Institute of Technology & Science, Pilani, Rajasthan, India

A simple design for a microfluidic flow system for use in mixing or reacting assays with limited sample availability has been proposed and analyzed using COMSOL\'s multiphysics simulation package. The design is based on differential electroosmotic flow concept which has facilitated a number of interesting flow phenomena in micro-domains. For an average potential drop of about 86 kV/m in the ...

The 3D Mixed-Dimensional Quench Model of a High Aspect Ratio High Temperature Superconducting Coated Conductor Tape

W.K. Chan[1,2], J. Schwartz[2], P. Masson[3], and C. Luongo[4]
[1]FAMU-FSU College of Engineering, Tallahassee, FL, USA
[2]North Carolina State University, Raleigh, NC, USA
[3]Advanced Magnet Lab, Palm Bay, FL, USA
[4]ITER Organization/Magnet Division, Saint Paul-lez-Durance, France

A successful development of an effective quench detection and protection method for a high temperature superconducting (HTS) coil based on a HTS coated conductor tape lays on a thorough understanding of its slowly propagating, three-dimension (3D) quench behavior. Toward this goal, a 3D micrometer scale finite element (FE) thermo-magnetostatic HTS tape model is developed and implemented in ...

FSI for Coolant Flow in Research-type Nuclear Reactors

F. Curtis[1], K. Ekici[1], and J. Freels[2]
[1]University of Tennessee, Knoxville, TN
[2]Oak Ridge National Lab, Oak Ridge, TN

The High Flux Isotope Reactor, located at the Oak Ridge National Laboratory, is scheduled to undergo a conversion of the fuel used and this proposed change requires an extensive analysis of the flow through the reactor core. The core consists of approximately 500 very thin and long fuel plates through which the coolant (water) flows at a very high rate. Therefore, the design and the flow ...

La5Ca9Cu24O41 Layers as 1D Heat Spreaders for Thermal Management Solutions

C. Orfanidou, and J. Giapintzakis
Department of Mechanical and Manufacturing Engineering
University of Cyprus
Nicosia, Cyprus

This paper deals with the design of a viable thermal management solution using La5Ca9Cu24O41 layers for heat channeling. The simulations are carried out with the finite element method using COMSOL Multiphysics Heat Transfer Module. COMSOL 4.2 was used to model and optimize silicon devices. Malfunctioning elements on silicon devices are sometimes converted into hotspots resulting in the ...

Matching 4D Porous Media Fluid Flow GeoPET Data With COMSOL Multiphysics Simulation Results

J. Lippmann-Pipke, J. Kulenkampff, G. Marion, and M. Richter
Helmholtz-Zentrum Dresden
Rossendorf, Institut of Radiochemistry
Research Site Leipzig
Reactive Transport Division
Leipzig, Germany

We apply COMSOL Multiphysics for reproducing our experimental observations of fluid flow and transport processes in geological media. Our experimental GeoEPT-method allows the 4D monitoring of transport processes in geological material on laboratory scale. Explicitly we import “realistic structures” from geologic samples scanned by means of computer tomography (CT) as stl-files into COMSOL ...

Formation of Porosities During Spot Laser Welding of Tantalum

C. Touvrey[1], and P. Namy[2]
[1]CEA Valduc, France
[2]SIMTEC, France

The aim of the study is to predict the formation of porosities in the case of spot laser welding of tantalum. During the interaction, a deep and narrow cavity, called the keyhole, is generated. At the end of the interaction, surface tension provokes the collapse of the keyhole. Gas bubble can then be trapped into the melting pool, and give birth to residual porosities, according to the ...