Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Analysis and Optimization of Dual Arm, Center Excited, Surface Micro-machined Archimedean Spiral Antenna with Improved Wideband Characterestics

G. Miranda[1], N. S. Pamidighantam[1], R. V. Iyer[2], S. Shukla[3], P. Suresh[3], and P. M. Soundarajan[3]
[1]Department of Telecommunications, PESIT, Bangalore,Karnataka,India
[2]Department of Science and Humanities, PESIT, Bangalore,Karnataka,India

An Archimedean Spiral antenna is the common frequency independent antenna which have very large bandwidth. Archimedean Spiral antenna are circularly polarized and typically have radiation patterns with peaks perpendicular to the plane of the spiral. Micro-machining techniques improves the bandwidth characteristics and the radiation efficiency of the antenna. Simulations and results with ...

Heat Generation from Dielectric Loss, Internal Heat Generation and Vibration in COMSOL4.2 Multiphysics

T. R. Jeba, B. Vins, and V. Ramamoorthy
HCL Technologies

This paper presents a FEA approach to estimate temperature rise and thermal stress experienced in PZT/Solid structure due to internal heat generation and dynamic excitation. The power dissipative density consumed by structural damping of the mass structure, internal heat generation due to applied voltage and dielectric loss of the PZT material is first determined. The dissipative power is then ...

Conjugate Heat Transfer for Wireless Power Amplifier

M. Williamson, S. Khan, and J. Kuntz
Kansas State University
Salina, Kansas

Wireless power transfer is an emerging technology with many potential applications. This technology may be of particular value when remotely controlled in extreme physical conditions. This study explores the ability of the COMSOL software to predict the performance of thermal management systems coupled with a commercially available wireless power amplifier. This study has undertaken the task ...

Simulation of Thermal Sensor for Thermal Control of a Satellite using COMSOL

G. Mangalgiri
BITS Pilani
Zuarinagar, Goa

Spacecrafts have a prime necessity that their temperature be controlled. This paper presents the simulation of a mechanically actuated field effect transistor that is used in a thermal system. It comprises of a composite beam, a piezoelectric substrate and a field effect transistor. The temperature rise causes a deflection in the composite beam thereby causing it to impinge on the piezoelectric ...

Modeling of Susceptor Assisted Microwave Heating in Domestic Ovens

K. Pitchai[1], S. Birla[2], J. Diamond Raj[3], J. Subbiah[2], and D. Jones[2]
[1]Dept. of Food Science and Technology, University of Nebraska, Lincoln, NE
[2]Dept. of Biological Systems Engineering, University of Nebraska, Lincoln, NE
[3]Indian Institute of Crop Processing Technology, Thanjavur, Tamil Nadu, India

Susceptors are very thin metallic microwave absorbing films used in microwaveable food packaging. They tend to heat up very rapidly during microwave heating and this effect helps to overcome two major issues faced in domestic microwave ovens; 1) Non-uniform heating and 2) lack of browning. While susceptors are being widely used, there is still a lack of scientific knowledge about their ...

Xylophone Bar Magnetometry and Inertial-grade MEMS Optimisation: a Multiphysics Approach

H. T. D. Grigg, and B. J. Gallacher
Microsystems Group
Newcastle University
Newcastle upon Tyne
Tyne and Wear, UK

This paper presents ongoing research aimed at development of a MEMS magnetometer capable of nanoTesla sensitivity. Such a device would pave the way for inertial-grade MEMS IMUs. A resonant sensor is proposed, based on a Xylophone Bar sense element, and is analysed both directly and via COMSOL. Mode shapes and frequencies are found as functions of geometric parameters, and the results used ...

Fluid Flow and Current Density Distribution in Large-area HT PEMFCs

G. C. Bandlamudi[1,2], C. Siegel[2], C. Heßke[1], and A. Heinzel[1,2]
[1]ZBT Duisburg, Duisburg, Germany
[2]University of Duisburg-Essen, Duisburg, Germany

High temperature polymer electrolyte membrane fuel cells (HT PEMFCs) are very promising technologies when used in combined cooling and heating power (CCHP) systems. They are operated at 160°C, offering the possibility of high tolerance to fuel impurities and a possibility to use the heat generated for cooling and heating purposes, leading to higher total system efficiency. Employing a 24 ...

Modeling an electric cell actuator and loudspeaker using COMSOL Multiphysics

W. J. Wu
NTU Nano-Bio MEMS Group
National Taiwan University,

This presentation presented the following: * The building of an FEA model of an electric cell actuator using COMSOL Multiphysics * Validation of this model through the AVID and ESPI measurement systems * The building of an FEA model of an electric loudspeaker using COMSOL Multiphysics * Validation of this model throughan acoustic measurement systems This paper is in Chinese.

Dynamic Multi-Phase Modelling and Optimisation of Fluid Jet Polishing Process

A. Beaucamp[2], R. Freeman[2], and Y. Namba[1]
[1]Chubu University, Kasugai, Japan
[2]Zeeko Ltd, Coalville, UK

In the Fluid Jet Method, a polishing fluid is compressed and delivered through a nozzle, allowing the spot area to become continuously replenished with abrasives and coolant. Process parameters include: Abrasive type and concentration, Inlet pressure, Nozzle diameter, Impingement angle, Surface feed of spot. The simulation uses COMSOL’s turbulent 2-phase flow model, with the incompressible ...

Numerical Study of Exciton States of Core?shell CdTe/CdS Nanotetrapods by using COMSOL Multiphysics

Y. Yao?and K. Sakoda
National Institute for Materials Science
University of Tsukuba

This paper showed: * The electronic states of core-shell tetrapod with various shell thickness were calculated. Lowest 20 electron and hole wave functions have A1 or T2 symmetry. * At t=1.2 nm, the carriers separation is not serious, core-shell tetrapod is not apparent type II heterostructure. * Exciton states were investigated as a function of t. For large t, the lowest exciton state has T2 ...

3201 - 3210 of 3391 First | < Previous | Next > | Last