Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling Spectral Emission Phenomena in Beryllium Plasma Using COMSOL Multiphysics

C. Gavrila[1], C. P. Lungu[2], and I. Gruia[3]
[1]Technical University of Civil Engineering Bucharest, Romania
[2]National Institute for Laser, Plasma and Radiation Physics, Bucharest, Romania
[3]University of Bucharest, Faculty of Physics, Bucharest, Romania

The purpose of this paper is to present a numerical modeling of plasma phenomena in beryllium emissions using COMSOL Multiphysics software. The Beryllium films were deposited on mirror polished fine grain graphite substrates using the Thermionic Vacuum Arc (TVA) technology available at NILPRP – Magurele, Romania. The developed system for thin film deposition using thermionic vacuum arc (TVA) ...

Impulsive Thermomechanics of hypersonic surface phononic crystals

F. Banfi[1], D. Nardi[2], and M. Travagliati[3]
[1]Dipartimento Matematica e Fisica, Università Cattolica, Brescia, Italy
[2]JILA, University of Colorado at Boulder, Boulder, Colorado, United States
[3]Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa, Italy

Ultrafast optical generation of pseudosurface acoustic waves is investigated in hypersonic surface phononic crystals. The thermomechanics is modeled from first-principles to follow the initial impulsive heat-driven displacement in the time domain. Spectral decomposition of the displacement over the surface phononic crystal eigenmodes outlines asymmetric resonances featuring the coupling between ...

Numerical Experiments for Thermally-induced Bending of Nematic Elastomers with Hybrid Alignment

L. Teresi[1], and A. DeSimone[2]
[1]LaMS - Modeling & Simulation Lab, University Roma Tre, Roma, Italy
[2]SISSA - International School for Advanced Studies, Trieste, Italy

We deal with Liquid Crystal Elastomers (LCEs) having hybrid alignment (HNEs), that is, fabricated with a given non-homogeneous nematic orientation. For such a materials, permanent distortions induced by deswelling can be compensated by those resulting from cooling below the transition temperature, thus yielding the possibility of producing temperature-driven actuators. Here, we simulate the ...

Homogenized models of electrically-coupled excitable tissues

P. Goel


Pranay Goel received his B. Tech. in Engineering Physics from IIT Bombay, and MS and PhD in Physics from the University of Pittsburgh in 2003. He went on to two postodoctoral positions, the first at the Mathematical Biosciences Institute, The Ohio State University, and another at the Laboratory of Biological Modeling, The U.S. National Institutes of Health. He has been with IISER Pune since ...

Predicting the Retention Time of Nuclear Reaction Products in the PSI Recoil Chamber Using COMSOL Multiphysics

R. Dressler[1], R. Eichler[1]
[1]Paul Scherrer Institute, Villigen, Switzerland

Introduction: The chemical properties of the heaviest elements (atomic number Z > 103) depend on the influence of the high nuclear charge to their electronic structure. Enhanced chemical stability of copernicium (Cn, Z = 112) and flerovium (Fl, Z = 114) was predicted already 40 year ago by Pitzer [1]. The challenge of chemical investigations of these elements is the tiny production rates of few ...

Study on Electromagnetic Waves in the Terahertz Region Using COMSOL Multiphysics

T. Nishida[1]
[1]Shinshu University, Matsumoto City, Nagano, Japan

Electromagnetic waves in the terahertz (THz) region may be useful for non-destructive imaging and biosensing technology. This presentation shows the example of our research aimed at the development of application in the THz region. The result of comparing the FDTD method and COMSOL Multiphysics is demonstrated in the investigation of metamaterial and the photoconductive antenna.

Modeling Charge/Discharge Heat Generation of Li-ion Cells and Experimental Verification of Temperature Distribution

Tatsuya YAMAUE[1]
[1] Kobelco Research Institute, Inc., Kobe, Hyogo, Japan

Modeling the heat generation and the heat transfer of the electrode of lithium-ion battery are introduced. There are several models, such as an homogeneous heating model and a model considering the current and reaction distribution of electrode. Generally, electrodes have large area and the calculation load of the model becomes high. Therefore, some approximated models are required to analyze ...

Analysis of Temperature Distribution in a Magnetite Catalyst Bed under Microwave Irradiation using COMSOL Multiphysics®

Dai MOCHIZUKI et al.[1]

Tokyo Institute of Technology, Yokohama, Kanagawa, Japan[1]

Dehydrogenation of ethylbenzene with a magnetite catalyst has been performed with a fixed bed flow type reactor under microwave irradiation. Microwave heating showed a temperature gradient in the catalyst bed. We analyzed an electromagnetic field and heat transfer in the microwave cavity using COMSOL Multiphysics to visualize the temperature distribution in the catalyst bed.

Modeling Contaminant Diffusion in Highly Complex Rock Structures

N. Diaz[1], A. Jakob[1], L. Van Loon[1], and D. Grolimund[2]
[1]Paul Sherrer Institut NES/LES, Villigen PSI, Switzerland
[2]Paul Sherrer Institut NES/SLS, Villigen PSI, Switzerland

Opalinus clay is currently being proposed as a potential host rock for radioactive waste repository in deep geological formation. It is then important for performance assessments to understand the transport properties of such rocks. Clay materials are characterized by low hydraulic conductivities and diffusion is assumed to be the main transport mechanism. The studied rock is a complex assembly ...

Finite Element Modeling a Redox-Enzyme-Based Electrochemical Biosensor

Y. Huang[1], and A. Mason[1]
[1]Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan, USA

This paper describes the modeling of an electrochemical biosensor embedded in a microfluidic channel to determine the concentration of a target biomolecule. The total amount of analyte in the sample can be calculated by integrating the analyte concentration over the duration of the peak current. The biosensor is constructed by immobilizing redox-enzyme on an interdigitated array (IDA) electrode ...

3191 - 3200 of 3394 First | < Previous | Next > | Last