Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Engineering Light Photonics, Plasmonics and Meta-materials

Dr. A. Prabhakar
Dept. of Electrical Engineering, IIT-Madras, Chennai, Tamil Nadu, India

Anil Prabhakar joined the faculty at IIT-Madras in 2002, after 5 years of post-doctoral experience in the hard disk drive industry. His current research interests include photonics, spintronics, nonlinear dynamics and alternative and augmentative communication. As a member of the Optics Group in the Dept. of Electrical Engineering, he is actively involved in areas of data storage, ...

Modeling Bacterial Clearance Using Stochastic-Differential Equations

A. Jeremic, and A. Atalla
McMaster University, Hamilton, ON, Canada

In this paper, we develop a mathematical model to simulate the movement of bacteria into and within a capillary segment. Also, we model the transportation through capillary walls by means of anisotropic diffusivity that depends on the pressure difference across the capillary walls. By solving the model using COMSOL, it was possible to predict the concentration of bacteria at points within the ...

Comparative Study of an Open Waveguide.Application to Deconvolution of a Magnetic Probe in Near-Field Zone

A. Saghir, J.W. Tao, and C. Avram
INP, Laplace site Enseeiht, Toulouse, France

We present here our work on deconvolution of a magnetic probe to mesure electromagnetic emissions in near-field zone. To achieve this work,we have chosen a rectangular waveguide (WR90) as a radiating structure.Theoritical near-field is simulated using a FEM software (COMSOL) and also obtained by using a program based on transverse operator method (TOM), that lead to a very good field ...

Fluid Structure Interaction Applied to Upper Aorta Blood Flow

J. Anza[1], and M. Esteves[2]
[1]Department of applied mathematics, University of the Basque Country, Bilbao, Spain
[2]University of the Basque Country, Bilbao, Spain

This work deals with the computer simulation of the blood flow, the arterial wall deformation and their 3D bidirectional interaction, including initial stresses and root displacements. The flow is laminar and steady with flexible walls modeled with a hyperelastic Demiray material model. Poiseuille formula is used to check the bidirectional interaction. 2D axisymmetric and full 3D models have ...

Computational Fluid Dynamics Simulations of an Innovative System of Wind Power Generation

S. Carcangiu, A. Fanni, and A. Montisci
Department of Electric and Electronic Engineering
University of Cagliari
Cagliari, Italy

In this work an innovative wind power generation in urban areas is proposed. The generation system substitutes the roof of the building and it consists of a static part, the stator, and a moving part, called impeller, which is a centripetal turbine with vertical axis of rotation. Since the objective is to conveying the air flow in the stator, the logarithmic spiral has been chosen as the shape ...

Homogenized models of electrically-coupled excitable tissues

P. Goel


Pranay Goel received his B. Tech. in Engineering Physics from IIT Bombay, and MS and PhD in Physics from the University of Pittsburgh in 2003. He went on to two postodoctoral positions, the first at the Mathematical Biosciences Institute, The Ohio State University, and another at the Laboratory of Biological Modeling, The U.S. National Institutes of Health. He has been with IISER Pune since ...

Optimization of the Design of a GEM Tracker Based on Gas Flow Simulations with COMSOL

V. De Smet[1], V. Bellini[2], E. Cisbani[3], F. Noto[2], F. Mammoliti[2], C. M. Sutera[4], and M. Mangiameli[4]
[1]Dipartimento di Fisica ed Astronomia, Università di Catania, Catania, Italy; Haute Ecole Paul-Henri Spaak, ISIB, Bruxelles, Belgium
[2]Dipartimento di Fisica ed Astronomia, Università di Catania, Catania, Italy; INFN – Sezione di Catania, Catania, Italy
[3]INFN – Sezione di Roma - Sanità Group, Roma, Italy; Italian National Institute of Health, Roma, Italy
[4]INFN - Sezione di Catania, Catania, Italy

A Computational Fluid Dynamics study has been performed for a Gas Electron Multiplier (GEM) detector of high energy charged particles, currently under development as part of a new tracker of the high luminosity spectrometers in Hall A at Jefferson Lab. By gradual modifications of the geometry simulated in COMSOL, the design of the frame separating two GEM foils has been optimized with the aim ...

Predicting the Retention Time of Nuclear Reaction Products in the PSI Recoil Chamber Using COMSOL Multiphysics

R. Dressler[1], R. Eichler[1]
[1]Paul Scherrer Institute, Villigen, Switzerland

Introduction: The chemical properties of the heaviest elements (atomic number Z > 103) depend on the influence of the high nuclear charge to their electronic structure. Enhanced chemical stability of copernicium (Cn, Z = 112) and flerovium (Fl, Z = 114) was predicted already 40 year ago by Pitzer [1]. The challenge of chemical investigations of these elements is the tiny production rates of few ...

Web Based Laboratories for Teaching Electromagnetics for TEMPUS eLab Project

Y. El-Qattan [1], H. Ghali[1]
[1]Electrical Engineering Department, The British University in Egypt (BUE), El Sherouk City, Egypt

This paper presents a successful step towards the development of a “web-based laboratory” for teaching basic, and even advanced, electromagnetic concepts. The main idea is to develop a reusable model for the student to be used exactly as a hardware experiment in a physical laboratory, where he/she can change some of the experiment\'s physical parameters and get corresponding results. The two ...

Multiphysics Modeling Solutions for Advanced Vehicle Research & Development

Ercan Dede currently works as a Principal Scientist for the Toyota Research Institute of North America, where his research involves the multiphysics simulation and optimization of electromechanical systems for advanced vehicle applications. Dr. Dede received his Ph.D. and B.S., respectively, in 2007 and 1998 in Mechanical Engineering from the University of Michigan. From 1998 to 2003 he ...

3161 - 3170 of 3390 First | < Previous | Next > | Last