Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling of a Direct Methanol Fuel Cell

J. Drillet [1],
[1] DECHEMA-Forschungsinstitut, Frankfurt, Germany

This work aims at the modelling of a 5 cm^2 Direct Methanol Fuel Cell (DMFC) with mixed serial/parallel serpentine flow fields in terms of current/voltage behavior. One of the main challenge to overcome consists on lowering the so-called methanol cross over from the anode through the polymer membrane to the cathode that is responsible for mixed-potential formation at the cathode where both ...

Numerical Study of Secondary Flows in a Sinusoidal Pipe

O. Ayala [1], I. Ahumada [2], L. Renaudin [2],
[1] Engineering Technology Department, Old Dominion University, Norfolk, VA, USA
[2] Brazil Scientific Mobility Program, CAPES, Brasilia DF, Brazil

The direction of the fluid is strongly related to the Reynolds number; as it increases, so does the centrifugal acceleration which tends to push the axial flow towards the outer side of the pipe. Secondary flow appear as 2 or 4 vortical structures after the inflection point. For low Reynolds number, the rotational direction of vortical structures remains unchanged. The core of the vortical ...

Numerical Simulation and Thermal Analysis of Tumor in the Human Body

S. Hossain [1], F. A. Mohammadi [1]
[1] Department of Electrical and Computer Engineering, Ryerson University, Toronto, ON, Canada

INTRODUCTION: Abnormalities in local body surface temperature have been recognized as a sign of disease for centuries, much before humans knew about the cause of ailments or of pain [1]. The idea of this work is to use numerical simulation tools to predict the location, size and metabolism of tumor embedded in any outer body organ of human. Idealized thermal data of an organ, modeled either as a ...

Stress and Strain of Film on Deformed Polymer–metal

Guibang Cao [1], Xiaolan Xiao [1],
[1] GuangDong university of technology, Guangzhou, China

Polymer–metal is a kind of new composite materials rather than traditional metal packaging materials. It has both features of polymer film and sheet metal. However, the polymer film will damage in the sheet metal forming process. Therefore, we try to established a sheet metal forming model with punch and die in the study, based on solid mechanics module of COMSOL Multiphysics® software. We ...

Simulation of Beverage Refrigeration with Dependence on Container Shape, Material and Orientation

S. Bekemeier[1], L. Fromme[1], A. Genschel[1], K. Kröger[1]
[1]University of Applied Sciences Bielefeld, Department of Engineering Sciences and Mathematics, Bielefeld, Germany

Adequate cooling of beverages is a major issue in planning of several types of events, e.g. poster sessions at conferences. One crucial factor is the time needed to cool beverages from its initial temperature to the desired drinking temperature. We present a way to determine a close approximation for the cooling behavior of three types of commonly used beverage containers using COMSOL ...

Enhanced Spontaneous Emission in Plasmonic Nanostructures

Jun Yi [1], Song-Yuan Ding [2],
[1] State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
[2] Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, China

Spontaneous emission -- an electron in an excited state of an emitter spontaneously decays to another state with lower energy -- plays an important role in determining the performance of light-emitting diodes, fluorescent dyes, colorants, solar cells, etc. The efficiency of spontaneous emission is determined by the interaction between the emitter and its local electromagnetic environment(1, 2), ...

Finite-Element Evaluation of Thermal Response Tests Performed on U-Tube Borehole Heat Exchangers

E. Zanchini, and T. Terlizzese
[1]Dipartimento di Ingegneria Energetica, Nucleare e del Controllo Ambientale, Università di Bologna, Bologna, Italy

The results of two thermal response tests recently performed on two vertical borehole heat exchangers (BHEs) are presented. The BHEs have the same cross section and a depth of 100 m and 120 m respectively. The evaluation of the thermal properties of the ground and grout are performed by a finite-element simulation method, developed through the software package COMSOL Multiphysics 3.4.

Extraction of Phenolic Compound from Grape Fruit. A Comparison Between a 3D FEM Model and Experimental Results

E. Madieta, I. Zouid, R. Siret, and F. Jourjon
Laboratoire GRAPPE, ESA, Angers, France

Fresh fruits and vegetables are gaining importance in the human diet because they contain many beneficial compounds. Among these compounds, phenols are of vital importance due to their antioxidant properties. It is well evident from previous researches that the skin of red grapes is considered a good source of phenols. The aim of this work is to simulate the extraction procedure of phenols in ...

The Fabrication of a New Actuator Based on the Flexoelectric Effect

S. Baskaran[1], S. Thiruvannamalai[1], N. Ramachandran[1], F.M. Sebastian[1], and J.Y. Fu[1]
[1]State University of New York at Buffalo, Buffalo, New York, USA

This paper presents a novel methodology towards the design, analysis, and the fabrication process involved in developing a cost effective method to create a piezoelectric actuator by means of the flexoelectric effect. The basic physical equations of the flexoelectric effect and the qualitative analysis of the flexoelectric actuator are done using COMSOL Multiphysics. This effect is used to align ...

Coupled Models of Lithospheric Flexure and Magma Chamber Pressurization at Large Volcanoes on Venus

G. Galgana[1], P. McGovern[2], and E. Grosfils[2]

[1]Lunar and Planetary Institute, Houston, Texas, USA
[2]Pomona College, Claremont, California, USA

We present an implementation of the Structural Mechanics module of COMSOL Multiphysics to model the state of stress associated with the emplacement of large volcanic edifices on the surface of a planet. These finite element models capture two essential physical processes: (1) Elastic flexure of the lithosphere beneath the edifice load, and (2) Pressurization of a magma-filled chamber that serves ...