Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Estimation of Localized O2 Starvation Using 3D Modelling for PEM Fuel Cells

Ramesh P[1], S.P Duttagupta[1]
[1]Indian Institute of Technology Bombay,Mumbai, Maharashtra, India

Air breathing proton exchange membrane fuel cells have now found its use in wide range of domestic and commercial energy based applications. Optimization of Proton Exchange Membrane Fuel Cell system parameters and its safer operation under dynamic conditions ensure higher system output and longer device lifetime. Ensuring safety against oxygen starvation reduces the degradation of membrane ...

Resonant Frequency Analysis of Quartz Shear Oscillator

T. Satyanarayana[1], V. Sai Pavan Rajesh[2]
[1]NPMASS Centre, Lakireddy Bali Reddy Autonomous Engineering College, Mylavaram, Andhra Pradesh, India
[2]Lakireddy Bali Reddy Autonomous Engineering College, Mylavaram, Andhra Pradesh, India

The most commonly used type of resonator is the AT-cut, where the quartz blank is in the form of a thin plate cut at an angle to the optic axis of the crystal. This paper reports the modeling of a quartz oscillator for a resonant frequency analysis based on piezoelectric effects. The proposed oscillator consists of a single quartz disc with two electrodes on the top and bottom surfaces of the ...

Numerical Simulation for Landfill Stabilization Process considering Degradation of Organic Chemical Compounds in Waste

Hiroyuki ISHIMORI[1]
[1]Ritsumeikan University, Kyoto, Kyoto, Japan

This presentation describes the numerical simulation model where gas/liquid two-phase porous media flow equations are coupled to multicomponent gas-phase transport and water-phase transport equations in COMSOL Multiphysics. This is done in order to predict the landfill stabilization process considering degradation of organic chemical compounds in waste.

COMSOL Multiphysics® Simulation of Heat Generation from Hydrogen/Deuterium Loading of Nickel Alloy Nanoparticles - new

G. Miley[1], A. Osouf[1], B. Stunkard[1], T. Patel[1], E. Ziehm [1], A. Krishnamurthy[1], K. J. Kim[1]
[1]University of Illinois at Urbana Champaign, Champaign, IL, USA

A key issue for the development of a LENR power unit involves the measurement and energy output of the reaction. Our team is currently studying a gas loaded nanoparticle-type cluster power unit [1] which pressurizes various nanoparticle alloys with either deuterium or hydrogen. The principal elements in the various nanoparticle alloys are Nickel, Palladium and Zirconium, with each alloy ...

Blood Flow Patterns in a Patient Specific Right Coronary Artery with Multiple Stenoses - new

B. Liu[1]
[1]Department of Mathematics, Monmouth University, West Long Branch, NJ, USA

Atherosclerotic lesions preferentially develop in certain regions like bifurcations, branches, and bends [1, 2]. A possible explanation for such a preferential localization of atherosclerosis is that the geometry of the vessel influences the blood flow pattern. It suggests that the arterial geometry plays an important role in determining the localized blood flow information. Thus hemodynamic ...

Electrical Scale-Up of Metallurgical Processes - new

R. Schlanbusch[1], S. A. Halvorsen[1], S. Shinkevich[1], D. Gómez[2]
[1]Teknova, Kristiansand, Norway
[2]Department of Applied Mathematics & ITMATI, Universidade de Santiago de Compostela, La Coruña, Spain

The problem under investigation is electrical scale-up of a generic metallurgical process for primary metal production through resistive heating of slag by electric current, typically supplied by an AC three-phase system. Maxwell’s equations are analyzed revealing that the properties of the solution is determined by the parameter (L/δ)^2, where L is the linear size of the system and δ is the ...

Multiscale Simulation of a Photocatalytic Reactor for Water Treatment - new

A. Cockx[1], R. Degrave[1], P. Schmitz[1]
[1]University of Toulouse, Toulouse, France

This study deals with the 3D modeling of a light photocatalytic textile. This process aims to decontaminate industrial effluents such as water with pesticides. The present study describes the implementation of a reactive transport model in a computational fluid dynamics model developed on a Representative Volume Element (RVE) of the textile, i.e. at the microscopic scale. The final ...

Evolution of the Geochemical Background of an HLW Cell in the Callovo-Oxfordian Formation - new

O. Silva[1], M. Pekala[1], D. Garcia[1], J. Molinero[1], A. Nardi[1], M. Grive[1], B. Cochepin[2]
[1]Amphos 21 Consulting, Barcelona, Spain
[2]Agence Nationale pour la Gestion des Dechéts Radioactifs, Châtenay-Malabry Cedex, France

The French National Waste Management Agency (Andra) envisages the safe disposal of High-Level Waste Intermediate-Level Long-Lived Waste through deep geological storage (multibarrier). Waste storage is based on the Callovo-Oxfordian formation (CallOx). It has been updated a reactive transport model accounting for the chemical and thermal evolution of a HLW cell. Improvements are a better ...

Modelling of a Wool Hydrolysis Reactor - new

M. Giansetti[1], A. Pezzin[1], S. Sicardi[1], G. Rovero[1]
[1]Politecnico di Torino, Torino, Italy

The Life+ GreenWoolF project is aimed at demonstrating that green hydrolysis with superheated water is an effective way to convert wool wastes into organic nitrogen fertilizers. The core of the process is represented by the reaction tank (Figure 1) in which the hydrolyses reaction takes place. The temperature of the material during the reaction is one of the most influencing parameter and has to ...

Mathematical Model of Vacuum Foam Drying - new

M. Sramek[1], J. Weiss[2], R. Kohlus[1]
[1]Department of Food Processing Engineering, Institute of Food Science and Biotechnology, Hohenheim University, Stuttgart, Germany
[2]Department of Meat Science and Food Physics, Institute of Food Science and Biotechnology, Hohenheim University, Stuttgart, Germany

The mathematical model is closely related to the development of a novel drying method for high viscous and sticky materials. The foamed state facilitates diffusive moisture transport and therefore accelerating the drying process. Moreover the dried porous material can be easily converted into the powder. The mathematical modelling aimed at evaluating the complex drying process as basic ...

2731 - 2740 of 3390 First | < Previous | Next > | Last