Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Post Harvest Cold Chain Optimization of Little Fruits

S. Marai[1], E. Ferrari[1], R. Civelli[1]
[1]DiSAA, University of Milan, Milan, Italy

This paper presents heat transfer 3-D models of a passive refrigeration system used to improve the shelf life and the quality of the perishable fruits. Passive refrigerator system uses the changing phase to keep temperature close to the melting temperature. A multi-step study was performed: a 3-D heat transfer model on the empty box; a 3-D heat transfer model on the box containing a slab with ...

Nondestructive Testing of Composites Using Model Based Design

E. Nesvijski[1]
[1]ACOUSTICS@MBD CONSULTANTS, LLC, Westborough, MA, USA

There is a practical interest among composite materials manufacturers to high-speed accurate non-destructive evaluation (NDE) technology for voids inspection when these voids are natural components of such complex structures like resin insulated layer of double-sided copper-clad laminates. Model based design (MBD) of NDE system is one of principal solutions for voids inspection in such ...

Wind Flow Modeling of Area Surrounding the Case Western Reserve University Wind Turbine

M. Fernandes[1], D. Matthiesen[1]
[1]Case Western Reserve University, Cleveland, OH, USA

The CWRU Turbine is a research turbine located in a urban campus in Cleveland, Ohio. This location may create turbulence, resulting in a possible loss in energy generation. This research attempts to answers the question of whether the wind flow is affected by the buildings or not. The surrounding buildings, which vary in height from 20 to 40 meters, may affect the wind patterns at the hub ...

Mathematical Model for Prediction of Transmission Loss for Clay Brick Walls

J. Ratnieks[1], A. Jakovics[1], J. Klavins[1]
[1]Laboratory for Modeling Technological and Environmental Processes, University of Latvia, Riga, Latvia

A 2D numerical model for determination of sound reduction index is set up in this work. Results are in good agreement in middle and high frequency range when using solid structure approximation. Results are compared with experiment.

Nanoscale Structure Design in EM Fields Using COMSOL Multiphysics

J. Yoo[1], H. Soh[2], J. Choi[3], S. Song[4]
[1]Department of Mechanical Engineering, Yonsei University, Korea
[2]Hyundai Motor Co., Korea
[3]Samsung Electronics Co., Ltd., Korea
[4]Mando Co., Korea

Nanoscale structural analysis and design is presented. All the simulations are carried out using a finite element solver and optimization is performed using parameter and topology optimization schemes. It is concluded that COMSOL is effective for analysis and design of nanoscale structure design in electromagnetic field and it may be combined with several optimization methods to improve system ...

Development and Optimization of a Microfluidic Device for Magnetic Field Induced Cell Separation

L. Helmich[1], A. Hütten[1]
[1]Bielefeld University, Bielefeld, Germany

Besides conventional laboratory analysis methods, so called micro-total-analysis devices (µTAS) have gained great interest during the last decades. In this work we demonstrate a mechanism for the separation and selection of medical samples that can be applied within these µTAS devices. Due to magnetic beads, which are bound to the cell surface, these biological samples become sensitive to ...

Numerical Experiments on Deconvolution Applied to LES in the Modeling of Turbulent Flow

O. Toscanelli[1], V. Colla[1]
[1]Scuola Superiore S. Anna, Pisa, Italy

The Large Eddy Simulation is an important method to simulate turbulent flow. It does not produce a closed system of equations, to achieve this it is necessary to model the not-closed terms. The deconvolution can be used for this purpose. In this study some numerical experiments on this topic are performed with COMSOL Multiphysics®. The main objectives are to find an efficient way to implement ...

Thermal Diffusivity Test Bench for Li Ion Cells Using LiveLink™ for MATLAB®

A. Arzberger[1]
[1]RWTH Aachen University -ISEA-, Aachen, NRW, Germany

LiveLink™ for MATLAB® is used to fit the surface temperature of a battery cell within a COMSOL Multiphysics® model to the temperature measured by a thermal imaging camera. The test bench was designed and built up of ourselves to allow nondestructive thermal diffusivity measurement of Li Ion cells as a function of temperature, state of charge (SOC), state of health (SOH) and others. In that way ...

Modeling of Lorenz Force Flowmeter for Molten Metal Flow Application

T. V. Shyam[1], B. S. V. G. Sharma[1], Mrigendra Kumar Mrityunjaya [2], Dr. Ravinder Agarwal[2]
[1]Reactor Engineering Division, Bhabha Atomic Research Centre, Mumbai, India
[2]Thapar University, Patiala, India

Flow measurement of molten metals is a formidable task considering the hostile conditions. Many electromagnetic methods have been evolved for measurement of flow of conductive medium. The Lorenz force velocimetry is promising considering its non-intrusive nature. The Lorenz force velocimetry is an electromagnetic flow measurement method that is based on exposing molten metal flow to a ...

Smart Radiator Upgrade (Super Smart with Natural Gas)

E. Bozelie[1], P. Bruins[1]
[1]Saxion University Enschede, Enschede, The Netherlands

In heating upgrades, most attention is paid to the boiler. When upgrading to HR++-boilers (eff of 107%) however, difficulties may occur since the high efficiency boilers are designed for water temperatures around 40°C, while the old radiators are designed for water temperatures higher than 60°C. The resulting mismatch may lead to reduced performance, a larger carbon footprint and increased ...