Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

COMSOL Modeling of a Submarine Geothermal Chimney

M. Suárez [1], and F. Samaniego [2]
[1]Faculty of Sciences, Michoacán University (UMSNH), Morelia, Michoacan, Mexico
[2]Faculty of Engineering Postgrade Studies Division, National University of Mexico (UNAM), Mexico City, Mexico

New geothermal energy sources hold promise for the future. Deep submarine geothermal energy related to hydrothermal vents is emerging in many places along the oceanic spreading centers. Shallow submarine geothermal systems are found near to continental platforms. We present the initial development of mathematical models to simulate the energy transport in submarine systems. A model for the ...

Stochastic Approach in Approximation of the Transient Plasma Sheath Behavior in FEM

J. Brcka
TEL US Holdings, Inc., Albany, NY, USA

Recently, the advanced plasma tools have been using very high frequency power sources (>100 MHz) and their combination to excite plasma utilized in semiconductor technology. This approach is evoking the regimes that are less understood and currently a subject to many studies and experimental investigations. The paper describes quasi-stochastic approach applied for sheath properties and ...

Nonlinear Ferrohydrodynamics of Magnetic Fluids

Markus Zahn
Professor,
Massachusetts Institute of Technology, Cambridge, MA, USA

Markus Zahn received all his education at MIT, was a professor in the Department of Electrical Engineering at the University of Florida, Gainesville from 1970-1980, and then joined the MIT Department of Electrical Engineering and Computer Science faculty in 1980. He works in the Laboratory for Eelectromagnetic and Eelectronic Systems, in the MIT High Voltage Research Laboratory, is the Director ...

Reacting Flows in Industrial Duct-burners of a Heat Recovery Steam Generator

G. Petrone[1], G. Cammarata[1], S. Caggia[2], and M. Anastasi[2]
[1]Department of Industrial and Mechanical Engineering, University of Catania, Catania, Italy
[2]Engineering Maintenance - ISAB Energy Services, Priolo Gargallo, Italy

In this study, COMSOL Multiphysics is applied in order to simulate reacting flows for duct burner systems arranged in the post-firing section of a Heat Recovery Steam Generator of a combined cycle power plant. Two- and three-dimensional simulations are carried out in order to investigate on operative conditions mainly responsible of duct burners overheating. The results are obtained for several ...

Designing the Actuator for the Next-Generation Astronomical Deformable Mirrors: a Multidisciplinary and Multiphysics Approach

C. Del Vecchio[1], R. Biasi[2] , D. Gallieni[3], and A. Riccardi[1]

[1]INAF-OAA, Fierenze, Italy
[2]Microgate Srl, Bolzano, Italy
[3]ADS International Srl, Valmadrera, Italy

The actuation system of the deformable mirror is one of the crucial components of an Adaptive Optics unit. One possible implementation comprehends a linear force motor and a capacitive sensor providing the feedback measure signal. Choosing a magnetic circuit that makes optimum use of the magnetic force delivered by a current and properly arranging the electrostatic geometry allows to obtain very ...

Three-Dimensional Simulation of Signal Generation in Wide-Bandgap Semiconductor Radiation Detectors

J. E. Toney[1]
[1]Pennsylvania State University Electro-Optics Center, Freeport, Pennsylvania, USA

We demonstrate the use of Comsol Multiphysics with Matlab to model signal generation in wide-bandgap semiconductor radiation detectors. A quasi-hemispherical detector design is compared with a simple, planar detector. Results show that the quasi-hemispherical design can simply and effectively compensate for the poor hole transport of most compound semiconductor materials.

Thickness Optimization of a Piezoelectric Converter for Energy Harvesting

M. Guizzetti[1], V. Ferrari[1], D. Marioli[1], and T. Zawada[2]


[1]Dept. of Electronics for Automation, University of Brescia, Brescia, Italy
[2]Meggitt, Ferroperm Piezoceramics A/S, Kvistgaard, Denmark

The conversion of mechanical energy from environmental vibrations into electrical energy is a key point for powering sensor nodes toward the development of autonomous sensor systems. Piezoelectric energy converters realized in a cantilever configuration are the most studied for this purpose. In order to improve the performances of the converter, the geometry has to be properly designed. In this ...

Analysis of Sound Propagation in Lined Ducts by Means of a Finite Element Model

D. Borelli[1] and C. Schenone[1]
[1]DIPTEM, University of Genova, Genova, Italy

The present paper describes the results of a Finite Element Model used to analyze sound propagation in lined ducts. By means of a numerical model it was possible to predict the insertion loss inside rectangular lined ducts in a frequency range from 250 Hz to 4000 Hz. The model was validated by a comparison with experimental data obtained in accordance to ISO 11691 and ISO 7235 standards. The ...

Modeling Heat and Mass Transfer in Bread During Baking

V. Nicolas[1,2], J.P. Ploteau[1], P. Salagnac[2], P. Glouannec[1], V. Jury[3], and L. Boillereaux[3]
[1]Laboratoire d’Ingénierie des MATériaux de Bretagne – Equipe Thermique et Energétique, Université Européenne de Bretagne, Lorient Cedex, France
[2]Laboratoire d’Etudes des Phénomènes de Transfert et de l’Instantanéité : Agro-industrie et Bâtiment, Université de La Rochelle, La Rochelle Cedex, France
[3]Laboratoire de Génie des Procédés, Environnement, Agroalimentaire, ENITIAA, France

In this paper, we present a first model carried out with COMSOL Multiphysics to model bread baking, considering heat and mass transfer coupled with the phenomenon of swelling. This model predicts the pressures, temperatures and water contents evolutions in the dough for different energy requests. First results obtained are analyzed according to various physical parameters in order to better ...

Simulation of DC Current Sensor

K. Suresh, B.V.M.P.S. Kumar, U.V. Kumar, M. Umapathy, and G. Uma
National Institute of Technology Tiruchirapalli, Tamil Nadu, India

A proximity DC current sensor using of a piezo sensed and actuated cantilever beam with a permanent magnet mounted at its free end is designed and simulated in COMSOL Multiphysics. The change in resonant frequency of cantilever is a measure of the current through the wire. The sensor is found to be linear with good sensitivity.