See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2018 Collection

Multiphysics Simulations for the Design of Probe-Heads Micro-Needles

A. Corigliano[1], A. Courard[1], G. Cocchetti[1], P. Gagliardi[1], L. Magagnin[1], R. Vallauri[2], D. Acconcia[2]
[1]Politecnico di Milano, Milano, Italy
[2]Technoprobe, Cernusco Lombardone, Italy

The paper presents recent results concerning the experimental mechanical characterization, the numerical modeling and the design of micro-needles used in the construction of probe heads for wafer testing. A fully coupled electro-thermal model was created using COMSOL and combined to a ... Read More

Modeling Fluid-Induced Porous Scaffold Deformation

J. Podichetty Thribhuvan[1], S.V. Madihally[1]
[1]Oklahoma State University, Stillwater, OK, USA

Utilization of bioreactors to regenerate tissues outside the body has been intensely investigated in functional tissue engineering. Various studies have been performed using computational fluid dynamics (CFD) to understand fluid flow within bioreactors while assuming porous scaffold as a ... Read More

Contactless Power and Data Transfer for Multiple Nonlinear Loads

H.P. Schmidt [1], U. Vogl[1]
[1]UAS HAW Amberg-Weiden, Amberg, Germany

For the design of an inductive power and data transfer electromagnetic calculation are carried out. A transfer system is considered for loads that are distributed across some distances. For example, such loads are adjustable speed drives that are found in factory automation and intra ... Read More

Void Shape Evolution of Silicon Simulation in COMSOL Multiphysics®

C. Grau Turuelo[1], B. Bergmann[1], C. Breitkopf[1]
[1]Technische Universität Dresden, Dresden, Germany

The void shape evolution of a trench patterned silicon substrate results in diverse cavities by varying initial conditions. The size and the arrangement of the initial trenches are decisive for the transformation process besides the annealing conditions which are, in fact, time and ... Read More

Numerical Prediction of Particle Dynamics Within a Cytometer. Application to Counting and Sizing by Impendance Measurement

D. Isèbe[1]
[1]HORIBA Medical, Montpellier, France

This paper describes how to numerically tackle the problem of counting and sizing particles by impedance measurement in an orifice–electrode system. The model simulate the particle dynamics submitted to strong hydrodynamic stresses through a microorifice and compute the voltage pulses ... Read More

Simulation of a Single-Sided Magnetic Particle Imaging Device with COMSOL Multiphysics®

K. Gräfe[1], J. Mrongowius[1], T.M. Buzug[1]
[1]Institute of Medical Engineering, University of Luebeck, Germany

For the MPI imaging process, superparamagnetic iron oxide nanoparticles (SPIONs) are used as tracer material. The particles are excited by a sinusoidally varying magnetic field. A field-free point (FFP) is generated by the superposition of two magnetic fields. The FFP is important for ... Read More

Tunable MEMS Capacitor for mm and μm Wave Generation

Arpita Das[1], Amrita Nandy[1], Sakuntala Mahapatra[1], Sk. Mohammed Ali[1], Minu samantary[1]
[1]National MEMS design centre ,Department of Electronics and Telecommunication, Trident Academy of Technology, Biju Pattnaik University of Technology , India

This paper demonstrates the design of a tunable MEMS capacitor with two plates (one movable and one fixed). The response time obtained is 5μs. The tunable capacitor plays an important role in RF circuits. We focus on a tunable capacitor simulated using COMSOL Multiphysics®. In an ... Read More

Temperature Measurements of a Single Gold Nanoparticle under Laser Illumination

Kenji SETOURA et al.[1]

[1]The University of Tokushima, Tokushima, Tokushima, Japan

Temperature measurement of nanoparticles (NPs) under heating is an important technique in order to achieve potential applications such as photothermal cancer therapy and nanofabrication. We implemented the method to estimate the local temperature of a laser-heated gold NP on glass ... Read More

Pore-Level Influence of Contact Angle on Fluid Displacements in Porous Media new

H. Ali Akhlaghi Amiri[1]
[1]University of Stavanger, Stavanger, Norway

Wettability affects two-phase displacements in porous media by determining the microscopic distribution of fluids in pore spaces. The impact of wettability on transport properties at macro-scales has been widely addressed in literature; however a deeper understanding of wettability ... Read More

Evolution of the Geochemical Background of an HLW Cell in the Callovo-Oxfordian Formation new

O. Silva[1], M. Pekala[1], D. Garcia[1], J. Molinero[1], A. Nardi[1], M. Grive[1], B. Cochepin[2]
[1]Amphos 21 Consulting, Barcelona, Spain
[2]Agence Nationale pour la Gestion des Dechéts Radioactifs, Châtenay-Malabry Cedex, France

The French National Waste Management Agency (Andra) envisages the safe disposal of High-Level Waste Intermediate-Level Long-Lived Waste through deep geological storage (multibarrier). Waste storage is based on the Callovo-Oxfordian formation (CallOx). It has been updated a reactive ... Read More