Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Thermal Hydraulic Study for Heavy Liquid Metal Flows using COMSOL Multiphysics

K. T. Sandeep[1], S. Sahu[1], V. C. Chaudhari[1], R. P. Bhattacharyay[1], E. R. Kumar[1]
[1]Institute for Plasma Research, Gandhinagar, Gujarat, India

Liquid metals are the extensively used as coolants in nuclear reactors.However, the heat transfer mechanism differs significantly in low Prandtl number heavy liquid metals (HLM’s) than those observed in common fluids. It is crucial to have the accurate heat transfer correlation for the liquid metal to estimate the heat removal efficiency. The present paper describes the use of COMSOL tool for ...

Nondestructive Testing of Composites Using Model Based Design

E. Nesvijski[1]
[1]ACOUSTICS@MBD CONSULTANTS, LLC, Westborough, MA, USA

There is a practical interest among composite materials manufacturers to high-speed accurate non-destructive evaluation (NDE) technology for voids inspection when these voids are natural components of such complex structures like resin insulated layer of double-sided copper-clad laminates. Model based design (MBD) of NDE system is one of principal solutions for voids inspection in such ...

Computational Modeling to Study the Treatment of Cardiac Arrhythmias using Radiofrequency Ablation

A. González-Suárez[1], M. Trujillo[2], J. Koruth[3], A. D'Avila[3], E. Berjano[1]
[1]Biomedical Synergy, Electronic Engineering Department,Universitat Politècnica de Valencia, Valencia, Spain
[2]Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de Valencia, Valencia, Spain
[3]Helmsley Cardiac Electrophysiology Center, Mt SinaiMedicalCenter and School of Medicine, New York, NY, USA

Previous studies proposed using bipolar radiofrequency ablation across two catheters placed on opposing surfaces of the ventricular wall to create transmural lesions. 2D and 3D models were built and solved with COMSOL Multiphysics software. With these models, it was possible to study the temperature distribution and lesion geometry (Figure), to compare the potential of two ways of applying ...

Hierarchical Modeling of Polymer Electrolyte Membrane Fuel Cells

J. Dujc[1], J.O. Schumacher[1]
[1]Zurich University of Applied Sciences (ZHAW), Institute of Computational Physics (ICP), Winterthur, Switzerland

A finite element model of a polymer electrolyte membrane fuel cell (PEMFC) is described in this paper. We divide the PEMFC into two separate and parallel 2D regions which are connected by the 1D regions representing the membrane electrode assembly (MEA). COMSOL Multiphysics® was used as a development tool for hierarchical 1D MEA models. Here we present a 1D model that is based on seven governing ...

Simulated Rheometry of a Nonlinear Viscoelastic Fluid

A. Czirják[1], Z. Kőkuti[1], G. Tóth-Molnár[1], P. Ailer[2], L. Palkovics[2], G. Szabó[1]
[1]University of Szeged, Szeged, Hungary
[2]Kecskemét College, Kecskemét, Hungary

In certain cases, the accuracy of measurements with a rotational rheometer can be influenced by inefficient thermal management, by the heat generated in the sample, or by rod-climbing due to the Weissenberg effect. We investigate the effect of these phenomena with simulations in COMSOL Multiphysics®. Our model is based on the axial symmetric (2D) formulation of the two-phase flow with the ...

Micromechanical Design of Novel Thermal Composites for Temperature Dependent Thermal Conductivity - new

R. C. Thiagarajan[1],
[1]ATOA Scientific Technologies Pvt. Ltd., Bengaluru, Karnataka, India

Materials with an order variable in thermal conductivity as a function of temperature are desirable for thermoelectric heat energy recovery, building thermal insulation and solar thermal applications. Thermal Conductivity is an inherent material property. Engineering the fundamental thermal conductivity needs manipulation at thermal photon level for conventional materials. Engineering thermal ...

Effect of Permeability Diminution in Nutrient Diffusion in Intervertebral Disc

M. A. Chetoui [1], O. Boiron [2], A. Dogui [3], V. Deplano [2],
[1] Université de Monastir, Ecole Nationale D'ingénieurs de Monastir; Ecole centrale Marseille, Marseille, France
[2] Aix-Marseille Université, CNRS, Ecole Centrale, Marseille, France
[3] Université de Monastir, Ecole Nationale D'ingénieurs de Monastir, Marseille, France

Intervertebral discs (IVD) are fibro-cartilages situated between vertebrae providing their joint flexibility. They play a major role in the transmission and absorption of load through the spine. The disc can undergo progressive structural and quantitative changes in its composition and morphology related to mechanical load applied to the spine which can lead to disc degeneration; this disease is ...

Predication of Acoustical Dissipation in Large Irregular Cavities by Helmholtz Solver

F. Mbailassem [1], Q. Leclere [1],
[1] LVA - INSA de Lyon, France

This paper introduces an efficient model to describe energy dissipation in acoustic. When the propagation domain has hard wall boundary conditions only viscous and thermal losses happen and are completely described by the so-called Full Linearized Navier-Stokes model (FLNS) which is implemented in thermoacoutics interface using the COMSOL Acoustics Module. This model defined by a set of ...

Simulation of Chemo-Thermomechanical Aging of Rubber

B. Musil [1], M. Johlitz [1],
[1] Universität der Bundeswehr München, Institute of Mechanics, Neubiberg, Germany

This work shows the finite element implementation of a constitutive model which can represent the chemo-thermomechanical aging of rubber. This approach considers the nonlinear thermo-viscoelastic behavior of rubber, is formulated for finite deformations in the continuum mechanical framework, takes thermo-oxidative aging effects, which are caused by the diffusion of oxygen into the bulk material, ...

Simulating an Adaptive, Liquid-Filled Membrane Lens with COMSOL Multiphysics® Software

V. S. Negi[1], H. Garg[1], B. Singh [2],
[1] Central Scientific Instruments Organisation, Chandigarh, India
[2] Chandigarh College of Engineering and Technology, Chandigarh, India

Adaptive optics control using liquid filled membrane lens is based on the principle of deflection of polymeric membrane. Controlled deflection in membrane leads to controlled focal length. This enhances the focus tuning ability of the system at the same time make optical system compact and economical. The adjustment of fluid pressure helps to toggle between different field of view at the same ...