Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling of Lorenz Force Flowmeter for Molten Metal Flow Application

T. V. Shyam[1], B. S. V. G. Sharma[1], Mrigendra Kumar Mrityunjaya [2], Dr. Ravinder Agarwal[2]
[1]Reactor Engineering Division, Bhabha Atomic Research Centre, Mumbai, India
[2]Thapar University, Patiala, India

Flow measurement of molten metals is a formidable task considering the hostile conditions. Many electromagnetic methods have been evolved for measurement of flow of conductive medium. The Lorenz force velocimetry is promising considering its non-intrusive nature. The Lorenz force velocimetry is an electromagnetic flow measurement method that is based on exposing molten metal flow to a ...

COMSOL Multiphysics® Model of Canine Elbow for Use in Investigating Medial Coronoid Disease

K. A. Bodnyk[1], G. J. Noble[1], N. Fitzpatrick[2], M. J. Allen[3], K. Stephenoff[1], R. T. Hart[1]
[1]Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
[2]Fitzpatrick Referrals, Godalming, Surrey, United Kingdom
[3]Department of Veterinary Medicine, The Ohio State University, Columbus, OH, USA

The elbow joint in dogs constitutes a complex interaction of three bones, the humerus, radius and ulna. Medial coronoid disease (MCD) is a common cause of lameness in dogs, i.e. fracturing of the most prominent portion of the ulnar joint surface driven in flexion and in pivot against both the humerus and the radius. The cause remains unknown, but prior studies suggest joint incongruency as an ...

Several Benchmarks for Heat Transfer Problems in COMSOL Multiphysics®

S. Titarenko[1]
[1]University of Leeds, Leeds, United Kingdom

Nowadays all branches in modern science and industry tend to solve ever complicating problems. As the result the computational time increases considerably and it become very important to reduce the processing time and use available resources more efficiently. Parallelizing problem proves itself as efficient way to overcome the described problem. In the poster we compare different methods of ...

Residual Stresses and Failure Probability of Solid Oxide Fuel Cells Due to the Sintering Process

F. Greco[1], J. van Herle[1], A. Nakajo[1]
[1]FUELMAT Group, Institute of Mechanical Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

A solid oxide fuel cell (SOFC) is composed of four layers (anode, electrolyte compatibility layer and cathode) of different ceramic materials. The anode layer is produced by tape casting, the remaining layers are deposited by screen-printing. The layers are sintered together at high temperatures. During heating up and cooling down (manufacturing process), stresses are generated in the layers due ...

Optimization of a Rotor Shape for Spherical Actuator with Magnetically Levitating Rotor to Match Octupole Field Distribution

M. Sidz[1], R. Wawrzaszek[1], L. Rossini[2], A. Boletis[3], S. Mingard[3], K. Seweryn[1], E. Onillon[2], M. Strumik[1]
[1]Space Research Centre of PAS, Warsaw, Poland
[2]CSEM Centre Suisse d’Electronique et de Microtechnique SA, Neuchâtel, Switzerland
[3]Maxon Motor AG, Sachseln, Switzerland

The use of a reaction sphere as an actuator used by satellite Attitude Control System was proposed over twenty years ago. In principle this concept assumes the use of a single reaction sphere which can be accelerated in any direction instead of a set of reaction wheels. The solution discussed in this work has been proposed and patented by CSEM company. Contrary to conventional ball bearing ...

A Lesson in Cartilage Therapy: Do Chondrocytes Utilize Mechanical Energy from Exercise for Cell Maintenance and Growth?

A. Miller [1], H. Viljoen [1], A. Chama [2], T. Louw [2],
[1] Department of Chemical and Biomolecular Engineering, University of Nebraska - Lincoln, Lincoln, NE, USA
[2] Department of Chemical Engineering, Stellenbosch University, Stellenbosch, South Africa

- Using COMSOL Multiphysics® Acoustics Module: Chondrocytes modeled attached to a plane (to mimic in vivo constraints) are shown to resonate near 5MHz. At resonance, the mechanical energy density in the nucleus is two times higher than in the cytoplasm. - Impact exercise is modeled as traveling pressure pulses and shown to cause cells to vibrate primarily at the resonance frequency. - Two ...

方便餐盒微波加热特性研究

宋春芳 [1], 王燕 [1], 金光远 [1], 崔政伟 [1],
[1] 江南大学,无锡,江苏,中国

方便餐盒微波加热特性研究 宋春芳※ 王燕 金光远 崔政伟   (江苏省食品先进制造装备技术重点实验室,江南大学机械工程学院,江苏,无锡,214122) 摘要:本文采用 COMSOL Multiphysics® 建立了电磁与传热耦合的仿真模型,研究方便餐盒微波加热传热特性规律,模型包括加热腔、波导以及可旋转的转盘和物料,通过比较不同转速对仿真结果的影响,选用 7.5rpm 作为转盘转速。研究结果表明,微波功率为 700W,90s 的微波加热后,方便餐盒空间温度场分布和瞬态温度曲线与实验结果基本保持一致,微波仿真模型可行,研究结果为方便餐盒的微波快速加热及工业化生产与加工提供一定的理论依据。 关键词:微波;仿真;转盘;传热;转速

Model of Moisture Dynamics in Road Systems of Sweden

H. Rasul [1], M. Wu [1], B. Olofsson [1],
[1] KTH, Stockholm, Sweden

In high latitude regions, the moisture dynamics in road systems is more complicated due to freezing/thawing. A better understanding of moisture dynamics in road systems in cold regions is essential for a stable road structure design and also for a sustainable road hydrologic environment. An observation system was installed in a highway in Sweden to detect water, heat and solute dynamics during ...

Simulation of a Dynamic Scraped Surface Heat Exchanger for Non-Newtonian Fluids

S. Birla [1],
[1] ConAgra Foods, Omaha, NE, USA

Scraped surface heat exchangers (SSHEs) are commonly used in the food, chemical, and pharmaceutical industries for heat transfer, crystallization, and other continuous processes. One of the factor posing difficulties to heat transfer is viscosity. Highly viscous fluids tend to generate deep laminar flow, a condition with very poor heat transfer rates and high pressure losses involving a ...

带螺旋翅片的绕管负压换热器

王坤祥 [1],
[1] 中国科学院理化技术研究所,北京,中国

引言:超流氦低温系统的正常运行离不开负压换热器,在此选用绕管式的负压换热器。其工况为4.45K~2K之间,低压侧绝对压力3000Pa左右。软件中用到的模块有Livelink for Solidworks、Livelink for Excel、“非等温湍流 k-ε”接口。 结果:求解结果定性上正确,问题在于为了让换热器达到理想换热效果,需要更多匝数的绕管,对计算机要求很大,在该模型中只保留了10匝。