Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Simulation of Beverage Refrigeration with Dependence on Container Shape, Material and Orientation

S. Bekemeier[1], L. Fromme[1], A. Genschel[1], K. Kröger[1]
[1]University of Applied Sciences Bielefeld, Department of Engineering Sciences and Mathematics, Bielefeld, Germany

Adequate cooling of beverages is a major issue in planning of several types of events, e.g. poster sessions at conferences. One crucial factor is the time needed to cool beverages from its initial temperature to the desired drinking temperature. We present a way to determine a close approximation for the cooling behavior of three types of commonly used beverage containers using COMSOL ...

Simulation of the Acoustic Environment for the Manufacture of Graded Porosity Materials by Sonication

C. Torres-Sanchez, and J. R. Corney
University of Strathclyde, United Kingdom

Many materials require functionally graded cellular microstructures whose porosity is engineered to meet specific requirements of diverse applications. It has been shown in previous work that the bubble growth rate of a polymeric foam can be influenced by the surrounding acoustic environment and, once solidified, produce a solid of graded porosity. Motivated by the desire to create a flexible ...

COMSOL Grab Bag: How to Use a Versatile CFD Code to Model Interesting Problems from Cryogenic Storage to Biofuel Production

Emily Nelson
Senior Research Engineer,
NASA Glenn Research Center, Cleveland, OH, USA

Emily Nelson received her PhD in Mechanical Engineering from the University of California at Berkeley. She is a senior research engineer at NASA Glenn Research Center and specializes in the formulation and solution of problems in microgravity science, multiphase flow, porous media, risk analysis, and gravitational biology. This leads her to fundamental and applied approaches on a range of issues ...

Ignition Process of Microplasmas

H. Porteanu, and R. Gesche
Ferdinand-Braun-Institut für Höchstfrequenztechnik, Berlin, Germany

Microplasmas at atmospheric pressure are required in many applications, where treatments in normal ambient, with spatial resolution, are important. The interest on such miniaturized sources has increased due to the availability of a new generation of microwave sources based on high power GaN transistors. The present work deals with a simulation of the plasma formation after the application of ...

Two-dimensional Analysis of Triple Coupled Physics of Structural Mechanics, Diffusion and Heat Transfer in a Gas Pipe

P. Lee-Sullivan[1], and M. Haghighi-Yazdi[1]
[1]Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada

In this study, a 2-D model has been built using COMSOL Multiphysics® to analyze a triple coupled physics problem involving simultaneous gas diffusion, heat transfer, and structural mechanics in a pipe due to the flow of high-pressure carbon dioxide. The problem geometry and boundary conditions were based on the analysis by Rambert et al. who have published the most advanced modeling work in ...

Analog to Digital Microfluidic Converter

R. Dufour [1], C. Wu[1], F. Bendriaa[1], V. Thomy[1], and V. Senez[1]
[1]BioMEMS Group, IEMN, University of Lille Nord de France, Villeneuve d’Ascq, France

This paper presents an Analog to Digital Microfluidic Converter (ADMC) using passive valves and enabling the conversion of a continuous liquid flow into droplets for Electro-Wetting On Dielectric (EWOD) actuation. Valves calibration, geometry characteristics and losses reduction have been optimized using microfluidic application mode of COMSOL Multiphysics®.

Numerical Simulation of the Functional Electromagnetic Stimulation of the Human Femoral Bone using COMSOL

Y. Haba[1], W. Kröger[2], H. Ewald[2], R. Souffrant[1], W. Mittelmeier[1], and R. Bader[1]

[1]Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, University of Rostock, Rostock, Germany
[2]Institute of General Electrical Engineering, University of Rostock, Rostock, Germany

In the present study we determined the relative conductivities and permittivities of fresh cortical and cancellous bone measuring human femoral heads in different slices of 1 mm thickness. The identified conductivities of human trabecular bone are used for the electromagnetic field simulation by means of COMSOL using a Micro-Computed Tomography (Micro-CT) model. The calculated model depends on a ...

Numerical Simulations Demonstrate Safe Vitrification and Warming of Embryos Using the Rapid-i™ Device

B.O.J. Johansson[1][2], Y.A. Tarakanov[1], H.J. Lehmann[2], and S.P. Apell[1]

[1]Department of Applied Physics, Chalmers University of Technology, Gothenburg, Sweden
[2]Vitrolife Sweden AB, Västra Frölunda, Sweden

During cryopreservation of human embryos, ice crystal formation in the embryos or in surrounding media may cause cryodamage to them and can be lethal. A strategy to avoid this is the vitrification procedure when the embryo and the surrounding medium undergo the transition to glassy state rather than a crystalline one during cooling. Similarly, recrystallization in the embryo or the medium must ...

Hydro-Mechanical Coupling in Saturated and Unsaturated Soils and its Consequences on the Electrical Behaviour

G. Della Vecchia[1], R. Cosentini[1], S. Foti[1], and G. Musso[1]

[1]DISTR, Politecnico di Torino, Torino, Italy

The consequences of hydromechanical coupling on the electrical conductivity of saturated and unsaturated soils are investigated experimentally and numerically. Simulations of the consolidation problem under vertical load for an elastic medium and of the coupled flow of two immiscible fluids have been performed in order to check the capability of electrical resistivity tomography to reconstruct ...

Thermal analysis of a spent fuel transportation cask

P. Goyal[1], V. Verma[1], R. K. Singh[1], and A. K. Ghosh[1]
[1]Reactor Safety Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India

Spent fuel transportation casks are required to meet among others (test conditions), the regulatory thermal test conditions in order to demonstrate their ability to withstand specified accidental fire conditions during transport. This paper describes the transient thermal analysis performed with the above intention for a transportation cask. The analysis was carried out using COMSOL ...