Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling a Microscale Proportional Flow Controller

H. Prentice-Mott, D. Irimia, A. Russom, and M. Toner
Center for Engineering in Medicine (BioMEMS Center), Massachusetts General Hospital, Charlestown, MA, USA

Microfluidics is able to provide many benefits to the fields of biology and chemistry through its ability to use small amounts of fluid and to finely control the environment of the experiment. However, the precision of the flow rate control at the microscale remains limited to either off-chip variable-flow-rate pumps or on-chip valves.Here, we report an on-chip pneumatic valve that allows for ...

Thermo-Mechanically Coupled Analysis of Shape Memory ActuatorsNC

Q. Li, and S. Seelecke
Department of Mechanical & Aerospace Engineering, North Carolina State University, Raleigh, NC, USA

This presentation deals with a Thermomechanical coupled analysis of a Shape Memory wire actuator. The outline for the Shape Memory Alloy model is:Motivation - Multiple scales and materialsMicro-scale mechanismsMeso-scale lattice elementsMacro-scale elementFree energy conceptUnified approach to various active materials(SMA, PZT, FSMA, etc.)Mathematical modelStatistical thermodynamicsThermally ...

Dependence of Potential and Ion Distribution on Electrokinetic Radius in Infinite and Finite-length Nano-channels

J. Schiffbauer[1], J. Fernandez[2], W. Booth[1], K. Kelly[3], A. Timperman[3], and B. Edwards[1]
[1]Physics Dept. West Virginia University, Morgantown, WV, USA
[2]Chemical Engineering Dept,West Virginia University, Morgantown, WV, USA
[3]Dept. of Chemistry, West Virginia University, Morgantown, WV, USA

A site-binding/dissociation model is used to determine surface charge in numerical studies of the equilibrium potential and ion distributions inside infinite and finite-length nano-channels. This COMSOL model allows us to investigate the response of surface (zeta) potential to environmental parameters such as reservoir salt concentration, solution pH and wall separation. The resulting ion and ...

Hybrid Finite Element-Finite Volume Algorithm for Solving Transient Multi-Scale Non-Linear Fluid-Structure Interaction during Operation of a Hydraulic Seal

A. Thatte, and R. Salant
Georgia Institute of Technology, Atlanta, GA, USA

This paper presents a hybrid finite element – finite volume algorithm for solving multi-scale fluid-structure interaction during transient operation of a hydraulic rod seal. The elasto-hydrodynamic model consists of several micro-scale and macro-scale analyses types, all incorporated in a single hybrid iterative computational framework to solve these highly coupled nonlinear multiphysics ...

Shape, Convection and Convergence

R. Pryor
Pryor Knowledge Systems, Inc., Bloomfield Hills, MI, USA

COMSOL Multiphysics software, when properly configured, can readily solve modeling problems in the laminar flow regime using the standard Navier-Stokes equations or in the fully turbulent flow regime using the kappa-epsilon model. Failure to solve a particular model is typically manifested by instability in the calculation and a failure of the model to converge. This paper presents a new approach ...

Modelling the Thermal Impact of a Repository for High-Level Radioactive Waste in a Clay Host Formation

X. Sillen
Belgian Nuclear Research Centre (SCK-CEN), Waste & Disposal Department, Mol, Belgium

Disposal in deep clay geological formations is one of the promising options for disposal of high-level radioactive waste. Yet, they can generate considerable amounts of heat as a side effect of radioactive decay. This paper shows how COMSOL Multiphysics has been used to evaluate the physical impacts of the heating on the geological media around a deep disposal system. The software was found ...

Electric Field Distributions and Energy Transfer in Waveguide-Based Axial-Type Microwave Plasma Source

H. Nowakowska[1], M. Jasínski[1], and J. Mizeraczyk[1,2]
[1]The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdansk, Poland
[2]Dept. of Marine Electronics, Gdynia Maritime University, Gdynia, Poland

In this paper, we examine changes of the electric field distributions in waveguide-based axial-type microwave plasma source (MPS) during tuning procedure. The distributions strongly depend on position of the movable short, so does the wave reflection coefficient of the incident wave. A method of determining tuning characteristics of the MPS consisting in treating the MPS as a two-port network, ...

Computation of Three-Dimensional Electromagnetic Fields for an Augmented Reality Environment

A. Buchau, and W. Rucker
Institut für Theorie der Elektrotechnik, Universität Stuttgart, Germany

Augmented reality is predestined for visualization of electromagnetic fields in air or inside transparent matter. Real existing objects are studied and invisible electromagnetic fields are added as virtual objects. Hence, experts as well as students are able to connect electromagnetic fields easily with studied objects. They can concentrate on physical effects instead on reading figures. Here, an ...

Analyzing the Performance of Lined and Unlined Simplified Cylindrical Cloaks

J. McGuirk and P. Collins
Air Force Institute of Technology, WPAFB, OH, USA

The performance of simplified cylindrical cloaks with various material parameters was investigated. The performance metric was the overall scattering width of the cloak with various objects in the hidden region. COMSOL was used to simulate three cloaks with different material parameters to determine the total field in the simulation domain. For all cloaks simulated in this effort, a PEC-lined ...

COMSOL Multiphysics for Efficient Solution of a Transient Reaction-Diffusion System with Fast Reaction

M.K. Gobbert[1], A. Churchill[1], G. Wang[1], and T.I. Seidman[1]
[1]Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore, Maryland, USA

A reaction between chemical species is modeled by a particular reaction pathway, in which one reaction is very fast relative to the other one. The diffusion controlled reactions of these species together with a reaction intermediate are described by a system of three transient reaction diffusion equations over a two-dimensional spatial domain. In the asymptotic limit of the reaction parameter ...

Quick Search

2661 - 2670 of 3668 First | < Previous | Next > | Last