Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Calibration of Ultrasonic Testing for Faults Detection in Stone Masonry

M. Usai[1], S. Carcangiu[1], G. Concu[2]
[1]Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
[2]Department of Civil Engineering, Environmental and Architecture, University of Cagliari, Cagliari, Italy

In the field of assessment methodologies, particular importance is given to Non-Destructive Testing Techniques, which aspire to achieve the highest number of information about materials and structures without altering their condition. Ultrasonic Testing exploits the transmission and reflection characteristics of mechanical waves with appropriate frequencies passing through the investigated item. ...

Cellular Scale Model of Stratum Corneum

R. Santoprete[1], B. Querleux[1]
[1]L'Oréal, Paris, France

To better quantify the impact of the morphological and mechanical properties of the main constituents of the stratum corneum (SC, the outermost layer of the skin) on its overall mechanical behavior, we developed a biomechanical model of the SC at a cellular scale, based on in vitro morphological and mechanical data. The sensitivity analysis quantified the relative impact of the mechanical and ...

Development of Magnetic Field Components for the Polarisation Option of the Neutron Spectrometer FOCUS

L. Holitzner[1], U. Filges[1], J.P. Embs[2], T. Fennell[2], T. Panzner[1]
[1]Laboratory for Developments and Methods, Paul Scherrer Institut, Villigen, Switzerland
[3]Laboratory for Neutron Scattering, Paul Scherrer Institut, Villigen, Switzerland

We show a new, favourable space-saving method to host a neutron polarizer in the iron-containing monochromator shielding of a time-of-flight spectrometer for cold neutrons. In this poster you can learn e.g., how to create a robust, homogeneous, rectangular magnetic field (here realized by permanent magnet queues inside an iron tube). The time-of-flight spectrometer FOCUS at the spallation ...

Studying the Sensitivity of the Wrinkling Process to Mesh Imperfections Using COMSOL Multiphysics® and LiveLink™ for MATLAB®

S. K. Saha[1], M. L. Culpepper[1]
[1]Massachusetts Institute of Technology, Cambridge, MA, USA

Wrinkles are formed on a thin film as a result of buckling-based instabilities. This can be used as an inexpensive fabrication technique for generating micro and nano scale periodic patterns. Finite element techniques are used for the predictive design of complex wrinkling patterns. As wrinkles are formed via a bifurcation process, the accuracy of these models is dependent on the initial ...

Improving the Sensoring of PEM Fuel Cell by Numerical Techniques - new

S. Skoda[1], E. Robalinho[2], E. F. Cunha[1], M. Linardi[1]
[1]Instituto de Pesquisas Energéticas e Nucleares - IPEN/CNEN-SP, São Paulo, SP, Brazil
[2]Universidade Nove de Julho - UNINOVE, São Paulo, SP, Brazil

The use of numerical techniques in PEM fuel cell sensoring represents an advantage of project engineering, reducing the costs and accelerating the manufacturing of prototypes. In this work some numerical responses are shown, relating to numerical sensoring of water and oxygen mole fractions at cathode of a 5 cm² of geometric area PEM fuel cell. The need to recognize a geometric figure of merit ...

Study of the Process, Design, and Operating Parameters Effect on the Efficiency of the Process Mill - new

A. K. Farouk[1]
[1]Department of Mathematics & Natural Science, University of Stavanger, Sandnes, Rogaland, Norway

This study is to investigate the velocity pattern and the velocity magnitude of the cuttings that is being processed in the process mill as a result of the rotating hammers. The process mill consists of a horizontal cylindrical shell equipped with renewable liners and rotating hammers for milling of drill cuttings. An F.E model of the process mill was constructed using dimensions similar to ...

Modeling and Simulation of High Sensitivity CMOS Pressure Sensor Using Free Boundary Circular Diaphragm Embedded on Ring Channel Shaped MOSFET

S. Joy[1], T. Tom[1]
[1]Rajagiri School of Engineering and Technology, Kochi, Kerala, India

Sensors have diverse applications ranging from medical field to space explorations. They convert physical parameters such as temperature, pressure, humidity etc: - into an electrical output. The discovery of piezoresistivity property of silicon and germanium led to miniaturization of pressure sensors. Improvement in the sensitivity is the major factor to be considered while designing pressure ...

Evaluation of Binary Mixture Models for 3D Printed Biosensors

J. Persad [1], S. Rocke [1], D. Ringis [1], A. Abdool [1],
[1] Department of Electrical and Computer Engineering, University of the West Indies, St. Augustine, Trinidad and Tobago

3D printing as applied to the area of electronics manufacture covers a broad range of traditional printing technologies [1]. The attraction in 3D printing lies in its potential to disrupt the traditional photolithographic/subtractive manufacturing line with simpler additive processes. Additive electronics manufacturing which utilises 3D printing techniques allow for fewer production steps and ...

Implementation of Immersed Finite Element Method for Fluid-Structure Interaction Applications

N. Nama [1], T. J. Huang [1], F. Costanzo [1],
[1] Department of Engineering Science and Mechanics, Pennsylvania State University, PA, USA

Fluid-structure interaction (FSI) refers to a class of problems in which the motions of fluid and solid are coupled. FSI is of great significance in many applications such as aero-elasticity, biomechanics, and design of various engineering systems. Typically, the multiphysics involved in the FSI problems render them too complex to solve analytically, necessitating the use of numerical ...

Thermal Characterization of Low-Melting-Temperature Phase Change Materials (PCM)

L. Salvador [1], J. Hastanin [1], F. Novello [2],
[1] Centre Spatial de Liège (CSL), Angleur, Belgium
[2] CRM Group, Liège, Belgium

The successful implementation of a high-efficient latent heat storage system necessitates an appropriate experimental approach to investigate and quantify the variations of the Phase Change Material (PCM) thermal properties caused by its aging, as well as its potential demixing induced by cyclic freezing and melting. In this paper, we present a concept for the PCM characterization. The proposed ...