Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Geothermal Water in Oil Reservoirs: A new 2D Model solved with COMSOL

M. C. Suarez-Arriaga1, F. Samaniego2, and J. Bundschuh3
1Faculty of Sciences, Michoacan University, Morelia, Mich., Mexico
2Faculty of Engineering, National University of Mexico, Morelia, Mich., Mexico
3Instituto Costarricense de Electricidad (ICE), Morelia, Mich., Mexico

We developed a new numerical model able to predict the critical oil rate for which oil-producing wells can be invaded by geothermal brine. The model is a single nonlinear partial differential equation (PDE) which depends only on water saturation. This PDE is a 3D-generalization of the classical 1D-Buckley-Leverett model. To solve this model, we used Lagrange-quadratic finite elements into the ...

Implementation of Cable Theory of Neurophysiology in COMSOL

G. V. Narayanan
University of Toledo, Toledo, OH, USA

Computational neuroscience seeks to develop mathematical models describing how the nervous system or some part of it carries out certain operations. Unfortunately, realistic models are typically so complex as to preclude a detailed mathematical analysis. Hence, a simplified 1-D cable theory has been developed, and this theory is used in neuroscience to study the behavior of neurons.In this paper, ...

Geometrical Optimization of Pyrophosphate Concentration in Thermosequencing Platform for DNA Sequencing

H. Esfandyarpour1,2, B. Zheng1, R. F. W. Pease1, and R. W. Davis2
1Center for Integrated Systems, Department of Electrical Engineering, Stanford University, Stanford, CA, USA
2Stanford Genome Technology Center, Stanford, CA, USA

For the past three decades, Sanger’s method has been the primary DNA sequencing technology; however, inherent limitations in cost and complexity have limited its usage in personalized medicine and ecological studies. A new technology called “Thermosequencing” can potentially reduce both the cost and complexity of DNA sequencing by using a microfluidic platform. To optimize the efficiency of ...

Modeling a Microscale Proportional Flow Controller

H. Prentice-Mott, D. Irimia, A. Russom, and M. Toner
Center for Engineering in Medicine (BioMEMS Center), Massachusetts General Hospital, Charlestown, MA, USA

Microfluidics is able to provide many benefits to the fields of biology and chemistry through its ability to use small amounts of fluid and to finely control the environment of the experiment. However, the precision of the flow rate control at the microscale remains limited to either off-chip variable-flow-rate pumps or on-chip valves.Here, we report an on-chip pneumatic valve that allows for ...

Thermo-Mechanically Coupled Analysis of Shape Memory ActuatorsNC

Q. Li, and S. Seelecke
Department of Mechanical & Aerospace Engineering, North Carolina State University, Raleigh, NC, USA

This presentation deals with a Thermomechanical coupled analysis of a Shape Memory wire actuator. The outline for the Shape Memory Alloy model is:Motivation - Multiple scales and materialsMicro-scale mechanismsMeso-scale lattice elementsMacro-scale elementFree energy conceptUnified approach to various active materials(SMA, PZT, FSMA, etc.)Mathematical modelStatistical thermodynamicsThermally ...

Dependence of Potential and Ion Distribution on Electrokinetic Radius in Infinite and Finite-length Nano-channels

J. Schiffbauer[1], J. Fernandez[2], W. Booth[1], K. Kelly[3], A. Timperman[3], and B. Edwards[1]
[1]Physics Dept. West Virginia University, Morgantown, WV, USA
[2]Chemical Engineering Dept,West Virginia University, Morgantown, WV, USA
[3]Dept. of Chemistry, West Virginia University, Morgantown, WV, USA

A site-binding/dissociation model is used to determine surface charge in numerical studies of the equilibrium potential and ion distributions inside infinite and finite-length nano-channels. This COMSOL model allows us to investigate the response of surface (zeta) potential to environmental parameters such as reservoir salt concentration, solution pH and wall separation. The resulting ion and ...

Hybrid Finite Element-Finite Volume Algorithm for Solving Transient Multi-Scale Non-Linear Fluid-Structure Interaction during Operation of a Hydraulic Seal

A. Thatte, and R. Salant
Georgia Institute of Technology, Atlanta, GA, USA

This paper presents a hybrid finite element – finite volume algorithm for solving multi-scale fluid-structure interaction during transient operation of a hydraulic rod seal. The elasto-hydrodynamic model consists of several micro-scale and macro-scale analyses types, all incorporated in a single hybrid iterative computational framework to solve these highly coupled nonlinear multiphysics ...

Design and Analysis of Stacked Micromirrors

S. Park, S. Chung, and J. Yeow

University of Waterloo, Systems Design Engineering, Waterloo, Ontario, Canada

A micromirror or a torsional actuator in general has been proven to be one of the most popular actuators fabricated by Micro-Electro-Mechanical System (MEMS) technology in many industrial and biomedical applications such as RF switches, a laser scanning display, an optical switch matrix, and biomedical image systems. In this paper, two stacked micromirrors are presented and analyzed to show ...

Finite Element Analysis of Ferrofluid Cooling of Heat Generating Devices

T. Strek
Institute of Applied Mechanics, Poznan University of Technology, Poznan, Poland

An external magnetic field imposed on a ferrofluid with a temperature gradient, results in a non-uniform magnetic body force, which leads to a form of heat transfer called thermomagnetic convection. A magnet placed near the device will always attract the colder ferrofluid more than warmer. Viscous, two-dimensional, laminar and incompressible ferromagnetic fluid flow, under the influence of a ...

Space-time Formulation for Finite-Element Modeling of Superconductors

F. Grilli[1], F. Sirois[1], M. Laforest[1], and S. Ashworth[2]

[1]Ecole Polytechnique de Montréal, Montréal, QC, Canada
[2]Los Alamos National Laboratory, Los Alamos, NM, USA

In this paper we present a new model for computing the current density and field distributions in superconductors by means of a periodic space-time formulation for finite elements (FE). By considering a space dimension as time, we can use a static model to solve a time dependent problem. This allows overcoming one of the major problems of FE modeling of superconductors: the length of simulations, ...

Quick Search

2661 - 2670 of 3645 First | < Previous | Next > | Last