Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Temperature and Acceleration Sensitivities of a Dual Cavity Fabry-Perot Interferometer - new

[1]R. K. Banyal
Indian Institute of Astrophysics, Bengaluru, Karnataka, India[1]

The numerical study of temperature and acceleration sensitivities of a dual cavity Fabry-Perot (FP) interferometer is carried out using finite element method. The optical cavities are formed by machining two side-by-side circular bore of 12 mm each on a monolithic block of low expansion material. One cavity will be used to generate broadband channel spectra for accurate wavelength calibration of ...

Simulation of Electromagnetic Enhancement in Transition Metamaterials using COMSOL

I. Mozjerin[1], T. Gibson[1], and N.M. Litchinitser[1]
[1]Department of Electrical Engineering, The State University of New York at Buffalo, Buffalo, New York, USA

Metamaterials are a new class of artificial materials, which possess various unusual properties. One of these properties is a negative index of refraction produced by setting both the dielectric permittivity ε and the magnetic permeability μ of the material less than zero. Unique electromagnetic phenomena occurring at the interface between negative-index materials and conventional ...

Analysis of Super Imaging Properties of Spherical Geodesic Waveguide Using COMSOL Multiphysics

D. Grabovi?ki?[1], J.C. González[1], P. Benítez[1], J.C. Miñano[1]
[1]Cedint Universidad Politécnica de Madrid, Madrid, Spain

Negative Refractive Lens (NRL) has shown that an optical system can produce images with details below the classic Abbe diffraction limit. This optical system transmits the electromagnetic fields, emitted by an object plane, towards an image plane producing the same field distribution in both planes. Recently, two devices with positive refraction, the Maxwell Fish Eye lens (MFE) (Leonhardt et al. ...

Updated Results of Singlet Oxygen Modeling Incorporating Local Vascular Diffusion for PDT - new

R. Penjweini[1], M. M. Kim[1], T. C. Zhu[1]
[1]Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA

Introduction: Singlet oxygen (¹O₂) has a critical role in the cell-killing mechanism of photodynamic therapy (PDT). Therefore, in this study, the distance-dependent reacted ¹O₂ is numerically calculated using finite-element method (FEM). Herein, we use a model [Ref. 1] that has been previously developed to incorporate the diffusion equation for the light transport in tissue and the macroscopic ...

COMSOL Multiphysics in Modeling MOCVDs

Y. Shimogaki
Shimogaki Laboratory
Department of Materials Engineering,
The University of Tokyo

This paper showed that: * SAG-MOCVD is a powerful tool to fabricate OEICs and is also effective to extract true surface kinetics during MOCVD. * GaAs-MOCVD process was examined by SAG analysis where it was seen that below 600ºC, surface kinetics shows non-linear behavior. * Surface reaction rate constant of adsorbed species was constant against offset angle, while adsorption equilibrium ...

Reconstruction for Interstitial Diffuse Optical Tomography (iDOT) for Human Prostate

X. Liang, K. Kang-Hsin Wang, and T. Zhu
University of Pennsylvania
Philadelphia, PA

Determination of tissue optical properties distributions is very important for determining light fluence distribution during photodynamic therapy (PDT). In this study, an interstitial diffuse optical tomography (iDOT) system was used to characterize the spatial distribution of optical properties for a series of mathematical phantoms as well as verification measurements in a prostate phantom. ...

Impulsive Thermomechanics of hypersonic surface phononic crystals

F. Banfi[1], D. Nardi[2], and M. Travagliati[3]
[1]Dipartimento Matematica e Fisica, Università Cattolica, Brescia, Italy
[2]JILA, University of Colorado at Boulder, Boulder, Colorado, United States
[3]Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa, Italy

Ultrafast optical generation of pseudosurface acoustic waves is investigated in hypersonic surface phononic crystals. The thermomechanics is modeled from first-principles to follow the initial impulsive heat-driven displacement in the time domain. Spectral decomposition of the displacement over the surface phononic crystal eigenmodes outlines asymmetric resonances featuring the coupling between ...

Modeling Mechanical Deformation and Optical Waveguiding Properties of Ion-Implanted Diamond

F. Bosia[1], P. Olivero[2], and E. Vittone[2]
[1]Dipartimento di Fisica Teorica, Università di Torino, Torino, Italy
[2]Dipartimento di Fisica Sperimentale, Università di Torino, Torino, Italy

Ion implantation in insulating materials leads to local variations in mechanical and optical properties that can be exploited for the fabrication of micro-structures. In particular, ion irradiation of diamond causes the formation of buried amorphised layers, with correspondent mass density and refractive index variations that depend on the level of “damage” of the crystal structure. ...

Optical Manipulation of Microscopic Objects

R. Ozawa
Yokohama University

In recent years, optical manipulation using optical radiation pressure has been widely studied. In this study, the radiation pressure exerted on various kinds of microscopic objects with different laser beams was evaluated by COMSOL Multiphysics software. By changing beam shapes, microscopic objects can be trapped and rotated. This paper is in Japanese.

Simulation of Vector Mode Grating Coupler Interfaces for Integrated Optics - new

C. T. Nadovich [1],
[1] Lafayette College, Easton, PA, USA

The use of grating couplers to couple conventionally phased and polarized light near vertically in and out of optical slab or film waveguides [1] represents an attractive method to interface optical fiber to photonic ICs. Previously developed grating coupler designs use transversely uniform grating structures matched to conventional scalar fiber modes. The performance of these geometries can be ...