Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Void Shape Evolution of Silicon: Level-Set Approach - new

C. Grau Turuelo[1], C. Breitkopf[1]
[1]Technische Universität Dresden, Dresden, Germany

The void shape evolution of silicon is a process driven mainly by surface diffusion which leads to a geometrical transformation of trenches etched in silicon wafers due to surface energy minimization. The temperature, the ambient gas and the annealing time affect the velocity of the process. The use of custom PDEs in COMSOL Multiphysics® software and the Level-Set method provide a good base ...

Optimization of Micro-Structured Waveguides in Lithium Niobate (Z-Cut) - new

H. Karakuzu[1], M. Dubov[1], S. Boscolo[1]
[1] Aston University, Birmingham, UK

We present an optimization procedure to improve the propagation properties of the depressed-cladding, buried micro-structured waveguides formed in a z-cut lithium niobate (LN) crystal by high repetition rate femtosecond (fs) laser writing. It is shown that the propagation wavelength for which the confinement losses of ordinary (O) and extraordinary ordinary (E) polarizations are below 1 dB/cm ...

Simulation of Diffuse Optical Tomography using COMSOL Multiphysics®

S. A. M. Kirmani [1] , L. Velmanickam [1], D. Nawarathna [1], S. S. Sherif [2], I. T. Lima Jr. [1],
[1] Department of Electrical and Computer Engineering, North Dakota State University, Fargo, ND, USA
[2] Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB, Canada

We show that COMSOL Multiphysics® software can efficiently simulate the diffusion equation (DE) in diffusive optical tomography systems. Using our implementation, we simulate a frequency domain diffusive optical tomography system two order of magnitude faster than the standard Monte Carlo method of light transport in tissues. This model can be used in the design and optimization of diffusive ...

Drift-Diffusion and Ballistic Transport Modeling in III-Nitride Multiple-QW Light Emitting Structures

M.V. Kisin, and H.S. El-Ghoroury
Ostendo Technologies Inc., Carlsbad, CA, USA

COMSOL-based modeling software developed at Ostendo Technologies allows detailed simulation of semiconductor lasers and light-emitting diodes. In this work, we study the inhomogeneity of the carrier injection into optically active quantum wells of polar and nonpolar III-nitride light emitters. Despite the absence of polarization-induced potential barriers, the nonpolar multiple-quantum well ...

Designing a Smart Skin with Fractal Geometry

S. Ni, C. Yang Koh, S. Kooi, and E. Thomas
Institute for Soldier Nanotechnologies
Dept. of Materials Science and Eng.
MIT
Cambridge, MA

Recently, the concepts of fractal geometry have been introduced into electromagnetic and plasmonic metamaterials. With their self-similarity, structures based on fractal geometry should exhibit multi-band character with high Q factors due to the scaling law. However, there exist few studies of phononic metamaterials having fractal geometry. COMSOL is used to investigate vector elastic and ...

Simulation of Photonic Crystals Particle Filling by Electrospray

A. Coll, V. Di Virgilio, S. Bermejo, and L. Castañer
Universitat Politècnica de Catalunya, Barcelona, Spain

Photonic crystals are widely used in optical applications as waveguides and band filters. Filling the periodic structural material of photonic crystals with other materials is very useful in order to change the optical properties of the devices. In this paper electrostatic COMSOL simulations describing an electrospray deposition of particles in macroporous structures are performed.

Modeling of a Nonlinear Hybrid Plasmonic Waveguide for Enhanced Surface Plasmon Polaritons Through Optical Parametric Amplification

D. Wang[1], T. Li[1], S. Wang[1], S. Zhu[1]
[1]Nanjing University, Nanjing, Jiangsu, China

Surface Plasmon Polaritions (SPPs), as electromagnetic waves localized at the surface of a metal, enjoy the unique properties to confine energy into sub-wavelength scale, which is beneficial for future photonic integration. However, the severe absorption caused by the metal influences the propagation distance greatly. Actually, SPPs loss can be compensated by optical parametric amplification in ...

A Study of Distributed Feed-Back Fiber Laser Sensor for Aeronautical Applications Using COMSOL Multiphysics

I. Lancranjan[1], C. Gavrila[2], S. Miclos[3], and D. Savastru[3]
[1]Advanced Study Centre - National Institute for Aerospace Research Elie Carafoli, Bucharest, Romania
[2]Technical University of Civil Engineering Bucharest, Romania
[3]National Institute R&D of Optoelectronics, INOE 2000, Bucharest, Romania

Distributed Feedback Fiber Laser (DFB-FL) sensors are increasingly used in aeronautical applications. One of the newest such applications consists in detecting the “transition” zone between laminar and turbulent air flow upon the extrados surface of an aircraft wing. In this specific application DFB-FL are operated as air pressure sensors monitoring amplitude variations of ~1 Pa (laminar flow) ...

TM Wave Propagation in Optical Nanostructures with a Third-Order Nonlinear Response: Modeling and Validation with COMSOL

A. Kildishev[1], E. E. Narimanov[1]
[1]Birck Nanotechnology Center, School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA

An enhanced method is used for analysis of third-order nonlinearities in optical nanostructures with scalar TM (H-field) frequency domain formulation. After embedding it in COMSOL Multiphysics it is shown to produce fast and accurate results without superfluous vector E-field formalism. A standard TM representation based on cubic non-linear susceptibility χ(3) results in an intractable ...

Terahertz Resonant Dipole Nanoantennas

S. Tuccio [1], A. Alabastri[1], L. Razzari[1], A. Toma[1], C. Liberale[1], R. Proietti Zaccaria[1], F. De Angelis[1], G. Das[1], E. di Fabrizio[1]
[1]Istituto Italiano di Tecnologia, Genova, Italy

Nanoantennas have been successfully employed in a wide set of applications. We show the possibility to expand usual nanoantenna functionalities in the THz domain with a gold dipole nanoantenna. We considered an array of aligned planar gold nanoantennas over a silicon substrate. The high near field enhancement, localized at the device ends, indicates potential uses for THz spectroscopy and ...