Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Study of the Anomalous Reflection from the Ultra-thin Metallic Nano-strip Antenna

胡德骄 [1], 庞霖 [1], 杜惊雷 [1],
[1] 四川大学,成都,四川,中国

Introduction: A metal film whose thickness is smaller than the skin depth, is of high transmission in the visible and half-transparent in the near infrared. However, when the film is divided into discrete nano-strips (i.e. array), an enhanced anomalous reflection and suppressed transmission take place. It was reported that this phenomenon is attributed to the Localize Surface Plasmon Resonance ...

Designing and Simulating THz Guided Wave Devices Using Finite Element Techniques

L. M. Hayden[1], D. A. Sweigart[1]
[1]Department of Physics, University of Maryland Baltimore County, Baltimore, MD, USA

The generation of terahertz frequency radiation (0.1-10 THz) is an important technological goal due to the use of this non-ionizing radiation to penetrate a wide range of non-conducting materials. One outstanding problem has been the propagation of THz radiation in guided wave devices. Few studies on the construction of efficient THz waveguide devices have been performed. We designed and ...

Analysis of Super Imaging Properties of Spherical Geodesic Waveguide Using COMSOL Multiphysics

D. Grabovi?ki?[1], J.C. González[1], P. Benítez[1], J.C. Miñano[1]
[1]Cedint Universidad Politécnica de Madrid, Madrid, Spain

Negative Refractive Lens (NRL) has shown that an optical system can produce images with details below the classic Abbe diffraction limit. This optical system transmits the electromagnetic fields, emitted by an object plane, towards an image plane producing the same field distribution in both planes. Recently, two devices with positive refraction, the Maxwell Fish Eye lens (MFE) (Leonhardt et al. ...

Electromagnetic Analysis of Cloaking Metamaterial Structures

E. Furlani, and A. Baev
The Institute for Lasers, Photonics and Biophotonics, University at Buffalo, Buffalo, NY, USA

We study cylindrical and spherical shell structures that have cloaking material properties proposed by Pendry et al. We use 2D and 3D time-harmonic analysis to study the field distribution and power flow for various arrangements of these structures. We have shown that the COMSOL RF solver is well suited for the analysis of cloaking metamaterial structures If cloaking material properties can be ...

Calculating and Observing Opto-Mechanically Induced Surface Acoustic Waves in a Silica Whispering Gallery Microresonator

J. Zehnpfennig
Photonics Research Center
United States Military Academy
West Point, NY

Here we calculate opto-mechanically induced Surface Acoustic Waves upon a silica microresonator using COMSOL. Using conservation of momentum, we show both analytically and numerically that the photonphonon interaction within the resonator cavity causes a moving train of electrodes - a virtual grating of matter density – that displace material in different directions and magnitudes. This hyper ...

COMSOL Multiphysics Super Resolution Analysis of a Spherical Geodesic Waveguide Suitable for Manufacturing

H. Ahmadpanahi[1], D. Grabovi?ki?[1], J.C. González[1], P. Benítez[1], J.C. Miñano[1]
[1]Cedint Universidad Politécnica de Madrid, Madrid, Spain

Recently it has been proved theoretically (Miñano et al, 2011) that the super-resolution up to ? /500 can be achieved using an ideal metallic Spherical Geodesic Waveguide (SGW). This SGW is as a theoretical design, in which the conductive walls are considered to be lossless conductors with zero thickness. In this paper, we study some key parameters that might influence the super resolution ...

Modeling of a Dielectric Barrier Discharge Lamp for UV Production

S. Bhosle, R. Diez, H. Piquet, D. Le Thanh, B. Rahmani, D. Buso
Université de Toulouse, Toulouse, France

Excilamps are artificial Ultraviolet sources based on the emission of excimers or exciplexes. The latter are excited states of weakly bound rare gas or halide/rare gas atoms which emit a photon in the UV region when they dissociate. Dielectric Barrier Discharge (DBD) excilamps are promising UV sources for the future, provided the coupling between their power supply is optimized. The model ...

Vertically Emitting Microdisk Lasers

L. Mahler, A. Tredicucci, and F. Beltram
NEST-INFM and Scuola Normale Superiore, Pisa, Italy

We describe the modeling of microdisk lasers displaying vertical emission. The devices are THz quantum cascade lasers with metallic gratings fabricated along the circumference.  The emission properties of the fabricated devices are well explained by the model, good mode control is obtained, and the collected power from a patterned device is increased 50 times with respect to unpatterned ...

Coupling Picosecond Terahertz Pulses to a Scanning Tunneling Microscope

P. H. Nguyen [1], C. Rathje [2], G. J. Hornig [1], V. Jelic [1], C. Ropers [2], F. A. Hegmann [1],
[1] University of Alberta, Edmonton, AB, Canada
[2] 4th Physical Institute, University of Göttingen, Göttingen, Germany

Probing ultrafast processes over subpicosecond and picosecond time scales provides fundamental insight into the nature of materials. We have experimentally demonstrated terahertz (THz)-pulse-induced tunneling in a scanning tunneling microscope (THz-STM) to image surfaces with simultaneous nanometer spatial resolution and subpicosecond time resolution [1]. However, the exact mechanism by which ...

Optimal Design for the Grating Coupler of Surface Plasmons

Y. Huang

Mathematics Department, University of California, Los Angeles, CA, USA

We present an optimization procedure to optimize the maximum coupling of free space optical wave to surface plasmon. Shape derivative from shape sensitivity analysis is calculated, and the corresponding partial derivatives of the objective functional with respect to finite number of design variables are derived. An optimal design of the gratings to couple maximum amount of free space photon ...