Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Acoustic Streaming Driven Mixing

N. Nama [1], P. Huang [1], F. Costanzo [1], T. J. Huang [1]
[1] Department of Engineering Science and Mechanics, Pennsylvania State University, PA, USA

Introduction - The ability to achieve rapid and homogeneous mixing at microscales is one of the essential requirements for various lab-on-a-chip applications [1]. The flow at microscales is characterized by low Reynolds number, resulting in laminar flow patterns. Thus, the mixing at microscales is dominated by slow diffusion process. Recently, an rapid and homogeneous mixing was demonstrated ...

Analysis of 3-D Printed Structural Components for Cube Satellites - new

C. Herzfeld[1]
[1]SPAWAR Systems Center (SSC) ATLANTIC, Charleston, SC, USA

Additive manufacturing uses 3D printing to build physical parts from CAD-based designs. The technology includes fused deposition modeling (FDM) and selective laser sintering (SLS) methods. 3-D printing is of particular interest for smaller, one-of-a-kind, customizable products. A cube satellite (CubeSat) containing fiber reinforced SLS parts has been successfully launched (Ref 1). Lower ...

CVD Graphene Growth Mechanism on Nickel Thin Films - new

K. Al-Shurman[1], H. Naseem[2]
[1]The Institute for Nanoscience & Engineering, University of Arkansas, Fayetteville, AR, USA
[2]Department of Electrical Engineering, University of Arkansas, Fayetteville, AR, USA

Chemical vapor deposition is considered a promising method for synthesis of graphene films on different types of substrate utilizing transition metals such as Ni. However, synthesizing a single-layer graphene and controlling the quality of the graphene CVD film on Ni are very challenging due to the multiplicity of the CVD growth conditions. COMSOL Multiphysics® software is used to investigate ...

Simulation of Nanopores in Capacitive Energy Extraction Based on Double Layer Expansion (CDLE)

E. Ruiz-Reina [1], F. Carrique [2], A.V. Delgado [3], M.M. Fernández [3],
[1] Department of Applied Physics II, University of Málaga, Málaga, Spain
[2] Department of Applied Physics I, University of Málaga, Málaga, Spain
[3] Department of Applied Physics, University of Granada, Granada, Spain

Capacitive energy extraction based on double layer expansion (CDLE) is a new method devised for extracting energy from the exchange of fresh and salty water in porous electrodes. First suggested by D. Brogioli, it is enclosed in a group of emergent technologies jointly known as Capmix methods. The CDLE technique is based on the fact that the capacitance of the electric double layer (EDL) ...

Fluid-Structure Interaction Modeling of High-Aspect Ratio Nuclear Fuel Plates Using COMSOL Multiphysics®

F. Curtis[1], K. Ekici[1], J. D. Freels[2]
[1]The University of Tennessee, Knoxville, TN, USA
[2]Oak Ridge National Laboratory, Oak Ridge, TN, USA

The High Flux Isotope Reactor at the Oak Ridge National Lab is in the research stage of converting its fuel from high-enriched uranium to low-enriched uranium. One of the areas being explored is the fluid-structure interaction phenomenon due to the interaction of thin fuel plates (50 mils thickness) and the cooling fluid (water). Detailed computational simulations have only recently become ...

Models of Simple Iron Cored Electromagnets - new

J. Mammadov[1]
[1]University of Manchester, Manchester, UK

This report mainly discusses the implementation and results of a project proposal, “Modelling using Finite Element Methods”. The report is devoted to implementation, which is a model of an electromagnet. The software tool that is used to model the electromagnet is COMSOL Multiphysics®, a commercial FEA package provided by the University of Manchester, Computer Science School. Additionally, the ...

A Practical Method to Model Complex Three-Dimensional Geometries with Non-Uniform Material Properties Using Image-based Design and COMSOL Multiphysics®

J. Cepeda[1], S. Birla[2], J. Subbiah[2], H. Thippareddi[1]
[1]Department of Food Science & Technology, University of Nebraska, Lincoln, NE, USA
[2]Department of Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA

Geometries with heterogeneous material properties are typically defined as a set of multiple parts, each part representing a different material. However, assembling or defining the individual parts of complex geometries can be difficult. A practical method based on image-based mesh generation, a custom algorithm for labeling materials, and interpolation functions of COMSOL Multiphysics® can be ...

Design and Simulation of Unimorph Piezoelectric Energy Harvesting System

E. Varadarajan[1], M. Bhanusri[2],
[1]Research and Innovation Centre (RIC), IITM Research Park, Chennai, Tamil Nadu, India
[2]Department of Physics, Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu, India

In this paper we made an attempt to maximize the power output in the different piezoelectric materials in a unimorph cantilever beam configuration. In this research, a macro scale unimorph piezoelectric power generator prototypes consists of an active piezoelectric layer, stainless steel substrate and titanium proof mass was designed for frequencies 60 Hz - 200 Hz. An analytical model of a micro ...

Multiphysics CAE Simulations of Casting Process for First-time-right Product Development

M. Hussain [1], Ramanathan S. [1], R. C. Thiagarajan [1],
[1] ATOA Scientific Technologies, Bengaluru, Karnataka, India

Casting product performance depends on material, flow, Process Temperature, Solidification, Shrinkage and residual stress. In a casting process, not all available resources are utilized effectively which results in low quality of casting, defects and metal wastage. Physics based modeling is increasingly used to optimize product performance, improve quality and reduce defects of casting products. ...

Modeling 3D Calcium Waves from Stochastic Calcium Sparks in a Sarcomere Using COMSOL Multiphysics®

L. T. Izu[1], Z. Coulibaly[2], B. Peercy[2]
[1]University of California-Davis, Davis, CA, USA
[2]University of Maryland, Catonsville, MD, USA

This paper utilizes the COMSOL Multiphysics® general form PDE interface and MATLAB® to model stochastic calcium waves in a sarcomere (basic unit of a heart cell). The model we present here shows the evolution of waves generated from calcium being released stochastically from sites modeled as point sources. The release sites are distributed on z-disc (planes) in a hexagonal pattern, and their ...

1 - 10 of 485 First | < Previous | Next > | Last