Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Experimentally Matched Finite Element Modeling of Thermally Actuated SOI MEMS Micro-Grippers Using COMSOL Multiphysics

M. Guvench[1], and J. Crosby[1]
[1]University of Southern Maine, Gorham, Maine, USA

In “Micro-Electro-Mechanical-Systems” shortly known as MEMS, one of the most important and effective principle of creating transduction of electrical power to displacement force is thermal expansion. A slim beam of MEMS material, typically Silicon, is heated by the application of electrical current via Joule heating; it expands and creates motion. In the design of many MEMS devices ...

Design of Passive Micromixers using the COMSOL Multiphysics software package

M. Itomlenskis, P. Fodor, and M. Kaufman

Physics Department, Cleveland State University, Cleveland, OH, USA

Relief patterning of the surface of microchannels has been actively pursued as a method of promoting mixing in systems with a low Reynold’s number (<<100). In this work, we explore, by using the COMSOL Multiphysics package and its Chemical Engineering Module, the possibility of enhancing the mixing quality of two fluids in a microchannel with a non-periodic fractal pattern of ridges ...

Multiphysics System Simulation for MEMS Inertial Sensors

R. Sattler
University of Applied Sciences, Regensburg, Germany

This paper gives an overview of modelling microsensors on geometry and system level. The focus will be on the generation of the multiphysics reduced order system model and the coupling with package and ASIC models. The method is based on modal superposition. This means all the details of the sensor can be considered in a finite element model. The mechanical mode shapes of this model form the ...

Mathematical Modeling of Zig-Zag Traveling-Wave Electro-Osmotic Micropumps

J. Hrdlicka[1], P. Cervenka[1], M. Pribyl[1], and D. Snita[1]
[1]Department of Chemical Engineering, Institute of Chemical Technology Prague, Prague, Czech Republic

In this paper we present results of the mathematical modeling of AC electroosmotic micropumps. Unlike others we use the full dynamic description, instead of the linearized model. Skewed hybrid discretization meshes are employed in order to accurately capture the main features of the studied system. Also, we introduce zig-zag electrode arrangements for traveling-wave electroosmotic micropumps. ...

Viscous damping of a periodic perforated MEMS microstructure when the Reynolds’ equation cannot be applied: Numerical simulations

D. Homentcovschi[1], and R.N. Miles[1]
[1]Department of Mechanical Engineering, SUNY Binghamton, NY

This paper develops a computational model for determining the total damping coefficient for a unit cell of a MEMS microscale device containing a repetitive pattern of holes. The basic cell of the microstructure is approximated by an axi-symmetric domain and the velocity and pressure fields are determined from solutions of the Navier-Stokes equations using the finite element software package ...

COMSOL Multiphysics Modeling of Rotational Resonant MEMS Sensors with Electrothermal Drive

S. Nelson[1], and M. Guvench[1]
[1]University of Southern Maine, Gorham, Maine, USA

COMSOL Multiphysics is employed to model, simulate and predict the performance of a high Q, in-plane rotational resonating MEMS sensor. The resonating sensor disk is driven by thermal expansion and contraction of the support tethers due to AC joule heating. The resonant frequency is sensed by stationary contacts. For cost reduction, the relatively simple, low cost SOIMUMPS fabrication process is ...

Simulating Frequency Nonlinearities in Quartz Resonators at High Temperature and Pressure

A. Beerwinkle[1], R. Singh[1], and G. Kirikera[2]
[1]Mechanics of Advanced Materials Laboratory, School of Mechanical and Aerospace Engineering, Oklahoma State University, Tulsa, OK
[2]Geophysical Research Company, LLC, (GRC) Tulsa, OK

A three-dimensional finite element model, based on the linear field equations for superimposed small vibrations onto nonlinear thermoelastic stressed media given by Lee and Yong, was developed. This method involves solving the thermal stress and piezoelectric model with geometric and material nonlinearities. The thickness-shear mode frequency response of the model was benchmarked to ...

Modeling an electric cell actuator and loudspeaker using COMSOL Multiphysics

W. J. Wu
NTU Nano-Bio MEMS Group
National Taiwan University,

This presentation presented the following: * The building of an FEA model of an electric cell actuator using COMSOL Multiphysics * Validation of this model through the AVID and ESPI measurement systems * The building of an FEA model of an electric loudspeaker using COMSOL Multiphysics * Validation of this model throughan acoustic measurement systems This paper is in Chinese.

Numerical and Experimental Evaluation for Measurement of a Single Red Blood Cell Deformability Using a Microchannel and Electric Sensors

K. Tatsumi[1]
[1]Kyoto University, Kyoto City, Kyoto, Japan

An electric micro-resistance sensor that can continuously measure the deformability of a single red blood cell (RBC) in a microchannel and a numerical model that can simulate the resistance and capacitance of the cell membrane and cytoplasm are developed and improved. The resistance signal pattern between the electrodes is measured to evaluate the feasibility of the present sensor, using the ...

Modeling of Silicon Piezoresistive Pressure Sensor: Application to Prevent Some Diabetes Complications

F. Kerrour[1], A. Beddiaf[1], M. Benabbas-Marir[1]
[1]MODerNa Laboratory, University Mentouri, Constantine, Algeria

Several analytical solutions describing the mechanical behavior of a silicon micro membrane deflection, perfectly embedded and subjected to a uniform and constant pressure have been proposed. The obtained results are compared with those obtained by using COMSOL software for a rectangular diaphragm deflection. COMSOL Multiphysics is powerful software for solving problems based on partial ...