Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Numerical Investigation of Electroosmotic Flow in Convergent Divergent Micronozzle

V. Gnanaraj[1], V. Mohan[1], and B. Vellaikannan[1]
[1]Thiagarajar College of Engineering, Madurai, Tamilnadu, India

A fundamental understanding of the transport phenomena in microfluidic channels is critical for systematic design and precise control of such miniaturized devices towards the integration and automation of Lab-on- a-chip devices. Electroosmotic flow is widely used to transport and mix fluids in microfluidic systems. Electroosmotic transport in convergent divergent micronozzle is significant in ...

Chemical Reaction Engineering: Difusão com Biotransformação

D. R. M. Vieira [1], S. A. Cardoso [1], A. S. Santos [1],
[1] Universidade Federal do Pará, Pará, Brasil

A biotransformação de substratos utilizando enzimas imobilizadas em nanopartículas presentes num meio fluido (substrato), contido num bioreator CSTR, foi investigada. O software COMSOL Multiphysics foi usado para simular o sistema através do uso das equações de difusão de espécies apropriadas para o consumo do substrato. Nessa investigação, a difusão na superfície da nanopartícula, onde ocorre a ...

Time-Dependent Study of Pressure Waves Generated by Square Array MEMS Ultrasound Transducers

M. A. G. Suijlen [1], R. J. Woltjer [1],
[1] Novioscan, Nijmegen, Netherlands

For non-imaging wearable ultrasound applications Novioscan is developing piezoelectric MEMS transducers. These transducers consist of a large array of micromechanical silicon membranes with piezoelectrically actuated regions to generate an out-of-plane displacement causing a pressure wave in the adjacent medium. For a typical application of echo sounding in a human body such transducers operate ...

Microfluidic Separation System for Magnetic Beads

F. Wittbrach, A. Weddemann, A. Auge, and A. Hütten
Department of Physics, Bielefeld University, Germany

It is possible to control the motion of magnetic beads using a combination of hydrodynamic and electromagnetic forces. In this work, we investigate the possibility to manipulate the motion of beads with different magnetic moments in a special microfluidic structure so as to separate them. We also experimentally prove that this structure is a suitable device to separate beads and show that the ...

Design of an Electrodynamically Actuated Microvalve Using COMSOL Multiphysics® and MATLAB®

M. Williams, J. Zito, J. Agashe, A. Sopeju, and D. Arnold
University of Florida, Gainesville, USA

This paper describes the design of a normally closed, electrodynamic microvalve.  Magnetic forces between a permanent magnet in the valve cover and a soft magnet in the valve seat hold the valve closed.  The combination of electrodynamic actuation and a mechanical restoring spring are used to open the valve.  A device model and a design optimization strategy using COMSOL ...

Magnetic Nanoparticles for Novel Granular Spintronic Devices

A. Regtmeier[1], A. Weddemann[2], I. Ennen[3], and A. Hütten[1]
[1]Dept. of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, Bielefeld, Germany
[2]Dept. of Elect. Eng. and Comp. Science, Lab. for Electromagnetic and Electronic Syst., MIT, Cambridge, MA
[3]Institute of Solid State Physics, Vienna University of Technology, Vienna, Austria

Superparamagnetic nanoparticles have a wide range of applications in modern electric devices. Recent developments have identi fied them as components for a new type of magnetoresistance sensor. We propose a model for the numeric evaluation of the sensor properties. Based on the solutions of the Landau-Lifshitz-Gilbert equation for a set of homogeneously magnetized spheres arranged in highly ...

Simulation of Deformed Solid Particles in Constrained Microfluidic Channel

M. Cartas-Ayala[1], R. Karnik[1]
[1]Massachusetts Institute of Technology, Cambridge, MA, USA

Characterization of particles has numerous applications in science and diagnostics. Recently, particle passage through constrained microchannels has been proposed to characterize particles based on their passage velocity. Nevertheless, there is no clear understanding of how the physics in this system interact. Here we quantify the effects of the flow around the particle by simulating the passage ...

Thermally Induced-Noise Reduction Using an Electrostatic Force Feedback

H. Lee, and J.V. Clark
Purdue University, West Lafayette, IN, USA

In this paper we present a method to mitigate the effect of thermally-induced noise in Micro-Electro-Mechanical Systems (MEMS) through a force feedback circuit. Inherent noise-induced vibrations, which would be inconsiderable in macro scale, are considered as a limitation in micro- and nano- scale since it diminishes the high performance of MEMS devices. For instance, depending on the stiffness ...

Air Convection on a Micro Hotplate Gas Sensor

S. Gidon[1], M. Brun[1], S. Nicoletti[1], P. Barritault[1]
[1]Commissariat Energie Atomique, LETI, Minatec Campus, Grenoble, France

Monitoring of indoor CO2 concentration is of particular interest to detect room occupancy in order to optimize power consumptions of building. One approach to monitor the indoor CO2 concentration is to use optical detection using specific absorption lines of CO2 molecules in the infrared domain close to 4.2 µm. Such optical sensors include a detector, typically a micro-bolometer, an IR source ...

COMSOL在压阻式柔性压力传感器中的应用

王宗荣 [1,2], 王珊 [1],
[1] 浙江大学,杭州,中国
[2] 香港大学,香港,中国

引言:柔性压力传感器在电子皮肤、智能假肢以及医疗监测诊断等领域发挥着十分重要的作用。因此压力传感器需要很高的灵敏度、较宽的敏感区间及稳定的性能。利用典型有机硅 PDMS 作为支撑层,聚合物 PEDOT: PSS 作为导电感应层制得的高度不均一微突结构的双压敏机制压阻传感器灵敏度达到了 851kPa-1。其探测范围广,性能优异,为解决目前压阻传感器中灵敏度低、敏感压力区间窄的难题提供了新思路。 COMSOL MULTIPHYSICS® 软件的使用:本文利用 COMSOL Multiphysics® 软件建立了不均匀微突结构的压阻式传感器模型,采用了结构力学与电流场两个物理场,通过电子接触对进行多物理场的耦合。研究在指定位移情况下,压阻式传感器电阻与电流的变化,从而得到灵敏度,验证不均匀微突结构压阻式压力传感器的双作用机制。同时,与均一微金字塔结构的压力传感器进行比较 ...