Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modelling of the Dynamical Fluorescent Micro-Thermal Imaging Experiment on the Heat Diffusion in the La5Ca9Cu24O41 Spin Ladder Compound - new

E. Khadikova[1], F. de Haan[1], P. H. M. van Loosdrecht[2]
[1]Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
[2]Department of Physics, University of Cologne, Köln, Germany

The dynamical fluorescent micro-thermal imaging (FMI) experiment has been used to investigate the phonon-magnon interaction in the 1D Heisenberg antiferromagnet La5Ca9Cu24O41. This material shows highly anisotropic heat conductivity due to the efficient magnetic heat transport along the spin ladders in the compound carried by magnetic excitations (magnons). To extract information on the phonon ...

Modeling Flow and Deformation During Salt-Assisted Puffing of Single Rice Kernels - new

T. Gulati[1], A. K. Datta[1]
[1]Department of Biological & Environmental Engineering, Cornell University, Ithaca, NY, USA

Puffing of biomaterials involves mass, momentum and energy transport along with large volumetric expansion of the material. Development of physics-based models that can describe heat and moisture transport, rapid evaporation and large deformations can help understand the puffing process. In this context, a fundamentals based study of salt-assisted puffing of rice is described. A multiphase model ...

Simulation of Thermomechanical Couplings of Viscoelastic Materials

F. Neff [1], T. Miquel [2], M. Johlitz [1],
[1] Universität der Bundeswehr München, Munich, Germany
[2] École polytechnique, Palaiseau, France

Using COMSOL Multiphysics® software, a new model was implemented with the Physics Builder functionality, which provides a thermomechanical coupling. It consists of two independent physics interfaces, one for the mechanical, viscoelastic behavior and one for the heat transfer. With the multiphysics coupling features it is now possible to add the effects of thermal expansion and dissipation or ...

Coupling Heat Transfer in Heat Pipe Arrays with Subsurface Porous Media Flow for Long Time Predictions of Solar Rechargeable Geothermal Systems

P. Oberdorfer[1], R. Hu[1], M. Azizur Rahman[1], E. Holzbecher[1], M. Sauter[1], P. Pärisch[2]
[1]Applied Geology, Geoscience Centre, University of Göttingen, Göttingen, Germany
[2]Institute for Solar Energy Research Hameln/Emmerthal (ISFH), Emmerthal, Germany

An increased share of renewable energies is regarded as an integral part of a strategy towards a sustainable future. With regard to the heat supply sector this may be achieved using solar thermal collectors or heat pump systems with borehole heat exchangers. During the last years solar thermal and geothermal systems have generally been installed separately. Now, several proposals are discussed ...

Simulating Experimental Conditions of the HIIPER Space Propulsion Device

A. Krishnamurthy[1], G. Chen[1], B. Ulmen[1], D. Ahern[1], G. Miley[1]
[1]University of Illinois at Urbana - Champaign, Urbana, IL, USA

The Helicon-Injected Inertial Plasma Electrostatic Rocket (HIIPER) is a two-stage electric propulsion system comprising of a helicon plasma source and an inertial electrostatic confinement (IEC) device for plasma production and acceleration, respectively. Several diagnostics such as a Faraday cup, spherical Langmuir probe, and gridded energy analyzer have been developed for analyzing various ...

A COMSOL Multiphysics® Study of the Temperature Effect on Chemical Permeation of Air Supply Tubes

R. Kher [1], C. Gallaschun [1], D. Crockill [1], R. Pillai [1], ,
[1] Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, USA

Air supply hoses are also predominantly used in the medical industry to aid in patient oxygen intake. In many situations, the outside of the hose can be contaminated with chemicals, especially if the hose lies on the ground in an environment where chemicals are easily found. Permeation and transport of chemicals into the walls of air supply hoses is a noteworthy problem in the chemical ...

Thermal Performance of a Deviated Deep Borehole Heat Exchanger: Insights from a Synthetic Heat and Flow Model

M. Le Lous [1], F. Larroque [1], A. Dupuy [1], A. Moignard [2]
[1] ENSEGID, Bordeaux, France
[2] Fonroche Géothermie, Pau, France

Earth heat exchangers are drawing increasing attention and popularity due to their efficiency, sustainability and universality. In addition, DBHE can offer higher temperatures and more return on investment than conventional system. DBHE is also an alternative to geothermal power generation or to direct use applications in an extreme engineered (or enhanced) geothermal systems (EGS). However, the ...

Heat Transfer Optimization of a Solar Radiation Concrete Oven for Rural Areas

I. Abu-Mahfouz [1], G. F. Mathews IV [1], M. J. Young [1],
[1] Penn State University Harrisburg, Middletown, PA, USA

The process of creating healthy food and drinking water typically requires electricity and fuel sources that are not available in rural areas. Africa has an abundance of solar radiation which when properly harnessed creates a viable heating source for cooking food and purifying water. This work will investigate the design of a prototype solar radiation concrete oven for cooking food and treating ...

Multiphysics Process Simulation of Static Magnetic Fields in High Power Laser Beam Welding of Aluminum

M. Bachmann[1], V. Avilov[1], A. Gumenyuk[1], M. Rethmeier[1]
[1]BAM Federal Institute for Materials Research and Testing, Berlin, Germany

The article deals with the application of the Hartmann effect in high power laser beam welding of aluminum. The movement of liquid metal in a magnetic field causes electric currents which build a Lorentz force that decelerates the original flow. The numerical model calculates the influence of a steady magnetic field on partial penetration keyhole laser beam welding of aluminum. Three-dimensional ...

Heat Propagation Improvement in YBCO-Coated Conductors for Superconducting Fault Current Limiters - new

D. M. Djokic[1], L. Antognazza[1], M. Abplanalp[2], M. Decroux[1]
[1]DPMC, University of Geneva, Geneva, Switzerland
[2]ABB Corporate Research Centre, Dättwil, Switzerland

YBCO Coated Conductors (CCs), used for applications in Resistive Superconducting Fault Current Limiters (RSFCLs), are known to have insufficiently high Normal Zone Propagation Velocity (NZPV) during quench events. The improvement can be made by enhancing the thermal conductivity of YBCO-CCs with no decrease in the electrical resistivity. We studied the advantage of multilayered structures grown ...