Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling a Combined Photovoltaic-Thermal Panel

E. Gutierrez-Miravete[1], B. Fontenault[2]
[1]Rensselaer Polytechnic Institute, Hartford, CT, USA
[2]General Dynamics-Electric Boat, Groton, CT, USA

A novel combined photovoltaic-thermal panel can simultaneously increase the conversion efficiency of the PV cell and utilize some of the excess thermal energy created by the conversion process (see Figure 1). The Conjugate Heat Transfer physics in COMSOL was used to create a two-dimensional, steady state model of such a combined photovoltaic cell-thermal panel. Figure 2 shows a magnified view of ...

Numerical Study of a High Temperature Latent Heat Storage (200-300oC) Using Eutectic Nitrate Salt of Sodium Nitrate and Potassium Nitrate

C.W. Foong, J.E. Hustad, J. Løvseth, and O.J. Nydal
Department of Energy and Process Engineering, Norwegian University of Science and Technology, Trondheim, Norway

In this study, a small scale direct solar thermal energy storage system with secondary reflector is designed and developed. The main advantage of thermal energy storage is that cooking can be carried out during the time when there is little or no sun shine. In addition, no heat transport fluid is needed in this system. A well insulated heat storage should keep the heat for about 24 hours. KNO3 ...

Food Cooking Process. Numerical Simulation of the Transport Phenomena

B. Bisceglia[1], A. Brasiello[1], R. Pappacena[1], R. Vietri[1]
[1]University of Salerno, Department of Industrial Engineering, Fisciano (SA), Italy

Aim of the study is to determine the influence of some of the most important operating variables, especially humidity and temperature, of drying air on the performance of cooking process of pork meat. The process is simulated using finite elements software COMSOL Multiphysics®. The proposed model considers two geometries: cylindrical and parallelepiped, with fixed physical properties and ...

A Practical Method to Model Complex Three-Dimensional Geometries with Non-Uniform Material Properties Using Image-based Design and COMSOL Multiphysics®

J. Cepeda[1], S. Birla[2], J. Subbiah[2], H. Thippareddi[1]
[1]Department of Food Science & Technology, University of Nebraska, Lincoln, NE, USA
[2]Department of Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA

Geometries with heterogeneous material properties are typically defined as a set of multiple parts, each part representing a different material. However, assembling or defining the individual parts of complex geometries can be difficult. A practical method based on image-based mesh generation, a custom algorithm for labeling materials, and interpolation functions of COMSOL Multiphysics® can be ...

Power Transistor Heat Sink Design Trade-offs

T. Eppes, I. Milanovic, and G. Quarshie
University of Hartford
West Hartford, CT

Power transistors require heat sinks to dissipate thermal energy and keep junction temperatures below the recommended limit. The reliability and longevity of any semiconductor device is inversely proportional to the junction temperature. Hence, a significant increase in reliability and component life can be achieved by a small reduction in operating temperature. A range of heat sink designs ...

Thermal Analysis of Induction Furnace

A. A. Bhat[1], S. Agarwal [1], D. Sujish[1], B. Muralidharan[1], B. P. Reddy[1], G. Padmakumar[1], K. K. Rajan[1]
[1]Indira Gandhi Center for Atomic Research, Kalpakkam, Tamilnadu, India

Induction furnaces are employed for vacuum distillation process to recover heavy metals after electro-refining operation. Induction furnace of suitable heating rate and cooled by passive means are required to be developed for this purpose. It is planned to set up a mock up induction furnace which will simulate the conditions to be realized in actual vacuum distillation furnace for this purpose. ...

3D Simulation of Heat and Moisture Diffusion in Constructions

M. Bianchi Janetti, and F. Ochs
University of Innsbruck
Unit Building Physics
Innsbruck, Austria

The simulation of heat and moisture transfer represents an essential resource in designing energy efficient buildings. In this paper a time-dependent wall model, consisting of several homogeneous domains, with third-type boundary conditions imposed on the surfaces, is implemented in the COMSOL Multiphysics environment. Temperature and moisture content is calculated inside the construction for ...

Dimensionless versus Dimensional Analysis in CFD and Heat Transfer

H. Dillon[1], A.F. Emery[1], A. Mescher[1], and R.J. Cochran[2]
[1]University of Washington, Seattle, WA, USA
[2]Applied CHT, Seattle, WA, USA

Students in engineering and science are often exposed early in their studies to non dimensional analysis. When it comes to solving fluid flow/heat transfer problems, many solutions, particularly industrial ones, are based on finite element/finite volume using dimensioned quantities. In order to compare to reference information one would like to use codes like COMSOL Multiphysics to solve non ...

Transient Heat Conduction in Semi-Infinite Solids Irradiated by a Moving Heat Source

N. Bianco1, O. Manca2, S. Nardini2, and S. Tamburrino2
1Dipartimento di Energetica, Termofluidodinamica applicata e Condizionamenti ambientali, Università degli Studi Federico II, Napoli, Italia
2Dipartimento di Ingegneria Aerospaziale e Meccanica, Seconda Università degli Studi di Napoli, Napoli, Italia

An analysis of the transient temperature distribution in a semi-infinite solid, irradiated by a moving Gaussian laser beam, is carried out numerically using COMSOL Multiphysics.Variable thermo-physical properties are accounted for. The workpiece is considered semi-infinite along the motion direction. Temperature distributions are evaluated both for different Peclet numbers and surface heat ...

Heat Transfer Modeling and Analysis of a Rotary Regenerative Air Pre-heater

R. K. Krishna, R. Ramachandran, and P. Srinivasan
Birla Institute of Technology and Science
Pilani
Rajasthan, India

An attempt has been made to sustain the efficiency of an air pre-heater(APH) in the long run. The APH is modeled using COMSOL Multiphysics in 3D and fed with real life conditions. Upon Heat transfer analysis, the temperature profile was found out and from that, the regions undergoing maximum thermal fatigue stress was identified. The plates of the APH to the periphery are subjected to maximum ...

Quick Search