Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Energy Pile Simulation – an Application of THM-Modeling - new

E. Holzbecher[1]
[1]Georg-August University, Göttingen, Germany

Energy piles, i.e. heat exchangers located within the foundation piles of buildings, are used for heating of cooling purposes. Although the absolute values of deformations and temperature gradients are low or moderate, the entire setting can be influenced by thermo-hydro-mechanical coupling. The fluctuating thermal regime may affect the deformation of pile and surrounding ground as effect of ...

Fracture-Matrix Flow Partitioning and Cross Flow: Numerical Modeling of Laboratory Fractured Core Flood

R. Sanaee[1], G.F. Oluyemi[1], M. Hossain[1], B.M. Oyeneyin[1]
[1]Robert Gordon University, Aberdeen, United Kingdom

The contrast between hydro-mechanical behavior of the rock matrix and fracture network systems results in flow partitioning between fracture and matrix systems which is affected by the In-situ stress regime. Fracture flow, Darcy law and free and porous media flow physics interfaces of COMSOL were used in simulating a fractured core flooding test to achieve a better understanding of flow ...

Calibration of a Geothermal Energy Pile Model - new

R. Caulk[1], J. McCartney[2], E. Ghazanfari[1]
[1]University of Vermont, Burlington, VT, USA
[2]University of Colorado, Boulder, CO, USA

In this study, a model of in-situ geothermal energy piles was constructed using COMSOL Multiphysics® software. Geothermal energy piles serve two purposes, first to transfer building load into the subsurface, but also to extract thermal heat from surrounding soils. This is achieved using a heat pump coupled with embedded heat exchangers. As a result, a multiphysics problem is introduced - heat ...

Verification of the Numerical Simulation of Permafrost Using COMSOL Multiphysics® Software - new

E. Dagher[1], G. Su[1], T. S. Nguyen[1]
[1]Canadian Nuclear Safety Commission, Ottawa, ON, Canada

COMSOL® software was used to simulate the conductive heat transfer with phase change in the geological formations encompassed in permafrost surrounding a shallow thaw lake. The purpose of the simulation was to verify the adequacy of COMSOL to model such phenomena by comparing the COMSOL results to those obtained by another FEM model (Ling and Zhang, 2003). The graphical comparison of the ...

Numerical Study on the Acoustic Field of a Deviated Borehole with 2.5D Method - new

L. Liu[1], W.J. Lin[1], H.L. Zhang[1]
[1]State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing, China

In this paper, we use the PDE interface of COMSOL Multiphysics® software to implement the 2.5D frequency wave-number domain method to investigate the wave propagation in a deviated borehole penetrating a transversely isotropic formation. A convolutional perfectly matched layer is realized to eliminate the reflections from the artificial truncation boundary. With this method, we can obtain the ...

Implementation of an Isotropic Elastic-Viscoplastic Model for Soft Soils Using COMSOL Multiphysics

M. Olsson[1], T. Wood[1], C. Alén[1]
[1]Division of GeoEngineering, Chalmers University of Technology, Gothenburg, Sweden

In this paper a elastic-viscoplastic (creep) model is implemented in COMSOL 4.2a and 4.3 and benchmarked against another commercial finite element software package with a very similar material model. It is also validated against commonly performed laboratory tests such as Constant Rate of Strain oedometer tests (CRS) and K0-Consolidated Undrained triaxial tests (K0CU). The implementation in ...

Coupling Heat Transfer in Heat Pipe Arrays with Subsurface Porous Media Flow for Long Time Predictions of Solar Rechargeable Geothermal Systems

P. Oberdorfer[1], R. Hu[1], M. Azizur Rahman[1], E. Holzbecher[1], M. Sauter[1], P. Pärisch[2]
[1]Applied Geology, Geoscience Centre, University of Göttingen, Göttingen, Germany
[2]Institute for Solar Energy Research Hameln/Emmerthal (ISFH), Emmerthal, Germany

An increased share of renewable energies is regarded as an integral part of a strategy towards a sustainable future. With regard to the heat supply sector this may be achieved using solar thermal collectors or heat pump systems with borehole heat exchangers. During the last years solar thermal and geothermal systems have generally been installed separately. Now, several proposals are discussed ...

The Dissolution and Transport of Radionuclides From Used Nuclear Fuel in an Underground Repository

Y. Beauregard[1], M. Gobian[2], and F. Garisto[2]
[1]University of Western Ontario, London, ON, Canada
[2]Nuclear Waste Management Organization, Toronto, ON, Canada

In the Canadian concept for a deep geological repository for used nuclear fuel, the used fuel bundles are placed in containers consisting of an inner steel vessel surrounded by a copper shell. The filled containers are placed in excavated tunnels or boreholes and surrounded by a compacted bentonite clay buffer material. In the event of container failure, the rate of migration of radionuclides ...

Mechanical Strength Simulation of Concrete Samples Using COMSOL Multiphysics® Software with 3D Mesh Generated by Industrial Tomography System - new

W. C. Godoi[1], D. A. Ussuna[2], S. J. Ribeiro[2], K. de-Geus[3], V. Swinka-Filho[2], F. C. de-Andrade[3], K. F. Portella[2], B. L. Medeiros[2], R. C. R. Santos[4]
[1]Universidade Tecnológica Federal do Paraná, Curitiba, PR, Brazil
[2]Institutos Lactec, Curitiba, PR, Brazil
[3]Copel Geração e Transmissão S.A., Curitiba, PR, Brazil
[4]Universidade Federal do Paraná, Curitiba, PR, Brazil

Analysis of concrete structures is usually carried out by destructive methods. The internal volume flaws directly influence concrete properties. Such inclusions are empty or even resulting from the manufacturing process or degradation by percolation leaching dissolution and chemical reactions between its constituents. Industrial tomography systems (ITS), have proved to be a powerful tool for ...

Analysis of 1D, 2D, and 3D Marine CSEM in COMSOL Multiphysics® Software - new

E. C. Luz[1]
[1]Universidade Federal do Pará, Belém, PA, Brazil

The Marine Controlled Source ElectroMagnetic (marine CSEM) is a geophysical method used by the oil industry to investigate resistive targets in the sediments under the ocean floor. In this work we simulate marine CSEM data including 1D, 2.5D and 3D modeling. The results obtained with COMSOL Multiphysics show themselves as a promising tool for the studies of electromagnetic methods in prospecting ...