See How Multiphysics Simulation Is Used in Research and Development


Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2018 Collection
Geophysics and Geomechanicsx

3D Simulations of an Injection Test Done Into an Unsaturated Porous and Fractured Limestone

A. Thoraval[1], Y. Guglielmi[2], F. Cappa[3]
[1]INERIS, Nancy, France
[2]CEREGE, Aix-en-Provence, France
[3]GEOAZUR, Valbonne, France

We have developed a numerical model to represent the effect of injection test in unsaturated porous and fractured rock mass. The test was conducted at the LSBB (Laboratoire Souterrain à Bas Bruit) site close to Rustrel, Vaucluse, France in the field of the French ANR project called “HPPP ... Read More

3D Modeling of Fracture Flow in Core Samples Using ?-CT Data

S. Hoyer[1], U. Exner[2], M. Voorn[1], A. Rath[3]
[1]Department of Geodynamics and Sedimentology, University of Vienna, Austria
[2]Museum of Natural History, Vienna, Austria
[3]OMV ESG-D Production Geology, Vienna, Austria

Knowledge on flow behavior in fractured reservoir rocks is of great interest in petroleum engineering as well as for geothermal assets. Due to the big difference of magnitude (fracture aperture: ~?m, lateral extension of reservoirs ~km), modeling of discrete fracture flow is not ... Read More

A Coulomb Stress Model to Simulate Induced Seismicity Due to Fluid Injection and Withdrawal in Deep Boreholes

G. Perillo[1], G. De Natale[2], C. Troise[2], A. Troiano[2], M.G. Di Giuseppe[2], A. Tramelli[2]
[1]University of Naples Parthenope, Naples, Italy
[2]INGV, Osservatorio Vesuviano, Naples, Italy

Fluid injection and withdrawal in deep wells is a basic procedure in mining activities and deep resources exploitation, i.e. oil and gas extraction, geothermal exploitation, geothermal permeability enhancement and waste ?uid disposal. All these activities have the potential to induce ... Read More

Oscillatory Thermal Response Test (OTRT) – An Advanced Method for Gaining Thermal Properties of the Subsurface

P. Oberdorfer[1]
[1]Georg-August-Universität Göttingen, Göttingen, Germany

Thermal Response Tests (TRTs) are the state-of-the-art method to obtain the thermal conductivity of the subsurface in the nearby ambience of a borehole heat exchanger (BHE). The results of TRTs are used to determine the necessary depth of the borehole and to make long time predictions ... Read More

Absorbing Boundary Domain for CSEM 3D Modeling

J. Park[1], T.I. Bjørnarå[1], and B.A. Farrelly [2]
[1]Norwegian Geotechnical Institute(NGI), Oslo, Norway
[2]MultiField Geophysics AS, Norway

In the study, we present an efficient absorbing boundary domain technique whose main application is the 3D finite element (FE) modelling of the so-called controlled-source electromagnetic (CSEM) data, collected for the geophysical exploration. The developed technique is based on the ... Read More

Computational Science and Engineering at DuPont

R. Nopper
Dupont Engineering
Research & Technology
Wilmington, DE

Rick has a BS in Physics, a ScM in Geological Sciences, and a PhD in Physics. He worked at Air Force Geophysics Laboratory, Conoco Petroleum Exploration Research, and, since 1989, has been at the DuPont Experimental Station. In this industrial setting, Rick has had opportunity to work on ... Read More

Assessment of Spatial Variably Saturated Flow by Irrigation Moisture Sensors in 2-Dimensions using the COMSOL Multiphysics 4.1

A. Boluwade, and C. A. Madramootoo
Bioresources Engineering, McGill University
Ste. Anne De Bellevue, QC
Canada

This paper reports on the application of COMSOL Multiphysics’ Richard\'s Equation Interface in the assessment of irrigation moisture sensors for detecting the level of water saturation in a spatial variably saturated soil. The Richard\'s Equation (in COMSOL) provides the interface which ... Read More

Impact Assessment of Hydrologic and Operational Factors on the Efficiency of Managed Aquifer Recharge Scheme

M.A. Rahman[1], P. Oberdorfer[1], Y. Jin[1], M. Pervin[1], E. Holzbecher[1]
[1]Department of Applied Geology, Geoscience Center, University of Göttingen, Göttingen, Lower Saxony, Germany

Due to increased demands on groundwater accompanied by increased drawdowns (ca. 2-3 meters/year), technologies that use alternative water resources have been suggested for Dhaka City, Bangladesh. Preliminary studies show that managed aquifer recharge (MAR) would help in optimal use of ... Read More

Earthquake and Volcano Clustering at Mono Basin (California)

D. La Marra[1], A. Manconi[2], and M. Battaglia[1]
[1]Dept of Earth Sciences, University of Rome “La Sapienza”, Roma, Italy
[2]IRPI-CNR, Strada delle Cacce, Torino, Italy

This study investigates the feedback between fault slip and dike intrusions during the Mono-Inyo eruption sequence of ~1350 A.D. (Mono Basin, California). We perform an extensive validation of 3D finite element models, implemented in the Structural Mechanics module of COMSOL ... Read More

Modeling of the Heat Transfer Between a CO2 Sequestration Well and the Surrounding Geological Formation

B. Sponagle[1], M. Amadu[2], D. Groulx[1], and M. Pegg[2]
[1]Mechanical Engineering, Dalhousie University, Halifax, NS, Canada
[2]Process Engineering and Applied Science, Dalhousie University, Halifax, NS, Canada

In a carbon sequestration system CO2 would be pumped down a well and into a reservoir at supercritical temperatures and pressures. An important consideration is the long term stability of the reservoir. The goal of these simulations is to thermally model the injection well and ... Read More