Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

3D Simulations of an Injection Test Done Into an Unsaturated Porous and Fractured Limestone

A. Thoraval[1], Y. Guglielmi[2], F. Cappa[3]
[1]INERIS, Nancy, France
[2]CEREGE, Aix-en-Provence, France
[3]GEOAZUR, Valbonne, France

We have developed a numerical model to represent the effect of injection test in unsaturated porous and fractured rock mass. The test was conducted at the LSBB (Laboratoire Souterrain à Bas Bruit) site close to Rustrel, Vaucluse, France in the field of the French ANR project called “HPPP-CO2”. The results underline the impact of fractures on the hydro-mechanical response of the rock-mass. Indeed ...

Stabilization Time in Infiltration Test - new

A. H. Ito[1], S. R. Lautenschlager[1], J. H. C. Reis[1], A. Belincanta[1]
[1]Universidade Estadual de Maringá, Maringá, PR, Brazil

The percolation of water into soil can be modeled considering Darcy's Law in laminar flow. In this manner the key property is the coefficient of hydraulic conductivity. Its determination can be made through laboratory or field testing. One of the most known field tests used for determination of this property is the Slug Test. This test consists of a perforated well in the ground where a known ...

Coupling Hydrodynamics and Geophysics with COMSOL Multiphysics: First Approach and Application to Leachate Injection in Municipal Waste Landfills

C. Duquennoi[1], S. Weisse[1], R. Clement[1], and L. Oxarango[2]
[1]Cemagref, HBAN research unit, Antony, France
[2]LTHE, Grenoble, France

The efficiency of bioreactor lanfills depends on a homogeneous distribution of leachate in the waste body. Therefore, optimisation of leachate injection systems is a challenging issue for operators. Most studies have shown that surface Electrical Resistivity Tomography (ERT) can be a suitable method to study moisture distribution (2D and 3D). But resistivity inversion models used to date are ...

Pore-Level Influence of Contact Angle on Fluid Displacements in Porous Media - new

H. Ali Akhlaghi Amiri[1]
[1]University of Stavanger, Stavanger, Norway

Wettability affects two-phase displacements in porous media by determining the microscopic distribution of fluids in pore spaces. The impact of wettability on transport properties at macro-scales has been widely addressed in literature; however a deeper understanding of wettability effects demands pore-level investigations which are still limited. In this paper, COMSOL Multiphysics® software ...

Modeling Self-Potential Effects during Reservoir Stimulation in Enhanced Geothermal System - new

G. Perillo[1], A. Monetti[2], A. Troiano[2], M. G. Di Giuseppe[2], C. Troise[2], G. De Natale[2]
[1]University of Naples Parthenope, Naples, Italy
[2]INGV-Osservatorio Vesuviano, Naples, Italy

Geothermal systems represent a large resource that can provide, with a reasonable investment, a very high and cost-effective power generating capacity. Despite its unquestionable potential, geothermal exploitation has long been perceived as limited, mainly because of the dependence from strict site-related conditions, mainly related to the reservoir rock’s permeability. In this work, SP ...

Hydro-Mechanical Coupling in Saturated and Unsaturated Soils and its Consequences on the Electrical Behaviour

G. Della Vecchia[1], R. Cosentini[1], S. Foti[1], and G. Musso[1]

[1]DISTR, Politecnico di Torino, Torino, Italy

The consequences of hydromechanical coupling on the electrical conductivity of saturated and unsaturated soils are investigated experimentally and numerically. Simulations of the consolidation problem under vertical load for an elastic medium and of the coupled flow of two immiscible fluids have been performed in order to check the capability of electrical resistivity tomography to reconstruct ...

Modeling Internal Erosion Processes in Soil Pipes

J. L. Nieber [1], G. V. Wilson [2], G. A. Fox [3],
[1] University of Minnesota, St. Paul, MN, USA
[2] United States Department of Agriculture - Agricultural Research Service National Sedimentation Laboratory, Oxford, MS, USA
[3] North Carolina State University, Raleigh, NC, USA

The erosion of the interior of soil pipes is an important process in the fields of geomechanics and geomorphology. Soil pipes can form in water holding structures like dams and levees, and water flow through these structures becomes concentrated into the soil pipes as they evolve by the process of internal erosion. With time the erosion process will lead to a soil pipe spanning the entire ...

Groundwater Modeling as an Assessment Tool for Underground Mines Located in Fractured Massifs

J. Font-Capó[1], A. Nardi[1], M. Mendoza [2], E. Ruiz[2], S. Jordana[1], J. Molinero[1], P. Trinchero[1], J. Vargas[3]
[1]Amphos 21 Consulting, Barcelona, Spain
[2]Amphos 21 Perú, Lima, Perú
[3]Worley Parson/TWP, Lima, Perú

Some of the present metallic ores mines are located in areas formed by a heterogeneous fractured massif where groundwater flows preferentially through fractures. Underground mining in these zones can cause impacts in streams, lakes and change the natural water balance of the watersheds, leading to conflicts between traditional uses of water and the mining activity. Quantification of these ...

Finite Element Models of Elasto-Plastic Deformation in Volcanic Areas

D. Scandura, G. Currenti, and C. Del Negro
Istituto Nazionale di Geofisica e Vulcanologia Sezione di Catania, Catania, Italy

In volcanic areas, the presence of heterogeneous materials and high temperatures affect the rheological behaviour of the Earth's crust that calls for considering the anelastic properties of the medium surrounding the magmatic sources. A thermo-mechanical numerical model is performed for evaluating the temperature dependency of the elasto-plastic solution. Both temperature distributions and ...

Matching 4D Porous Media Fluid Flow GeoPET Data With COMSOL Multiphysics Simulation Results

J. Lippmann-Pipke, J. Kulenkampff, G. Marion, and M. Richter
Helmholtz-Zentrum Dresden
Rossendorf, Institut of Radiochemistry
Research Site Leipzig
Reactive Transport Division
Leipzig, Germany

We apply COMSOL Multiphysics for reproducing our experimental observations of fluid flow and transport processes in geological media. Our experimental GeoEPT-method allows the 4D monitoring of transport processes in geological material on laboratory scale. Explicitly we import “realistic structures” from geologic samples scanned by means of computer tomography (CT) as stl-files into COMSOL ...