Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Integrated Model For Ocean Waves Propagating Over Marine Structures On A Porous Seabed

D-S. Jeng, X. Luo, and J. Zhang
Division of Civil Engineering, University of Dundee, Dundee, Scotland, UK

In this paper, an integrated model for ocean waves propagating over a submerged coastal structure, based on COMSOL Multiphysics, is presented. In the model, Navier-Stoke Equation is solved for the wave propagation and Biot’s poro-elastic model is solved for the porous seabed. The new feature of this model is to integrate both wave and soil models into one model. This can be achieved within ...

Designing Materials for Mechanical Invisibility Cloaks

P. Olsson[1], F. Larsson[1], A. Khlopotin[1], S. Razanica[1]
[1]Chalmers University of Technology, Gothenburg, Sweden

In solid mechanics, there is considerable interest in achieving “invisibility”. The applications in mechanics include protection of structures and parts of structures from potentially harmful transient waves and steady state vibrations. A suggested large scale application is that protection against seismic waves from earthquakes could be achieved by using cloaking to re-route the waves around ...

COMSOL Modeling of a Submarine Geothermal Chimney

M. Suárez [1], and F. Samaniego [2]
[1]Faculty of Sciences, Michoacán University (UMSNH), Morelia, Michoacan, Mexico
[2]Faculty of Engineering Postgrade Studies Division, National University of Mexico (UNAM), Mexico City, Mexico

New geothermal energy sources hold promise for the future. Deep submarine geothermal energy related to hydrothermal vents is emerging in many places along the oceanic spreading centers. Shallow submarine geothermal systems are found near to continental platforms. We present the initial development of mathematical models to simulate the energy transport in submarine systems. A model for the ...

The Effect of the Disintegration of Chemical Stratification on the Time-dependent Behavior of the Earth’s Mantle

A. Galsa, and M. Herein
Eötvös University
Budapest, Hungary

Based on recent results from seismology, geochemistry etc. the distinct chemical character of the D’’ layer (lowest part of the mantle around the Earth’s core) has appeared unequivocally. Numerical calculations have been carried out to investigate the effect of the disintegration, mixing and homogenization of the dense D’’ on the time-dependent behavior of mantle convection. A ...

Magnetotelluric Response Distortion Over Rugged Topography

D. Rizzello[1], P. Canepa[1], E. Armadillo[1]
[1]DISTAV - University of Genova, Genova, Italy

Topographic effects on magnetotelluric responses may be severe on rugged terrains. Finite elements simulation is a valuable tool to quantify this effect, due to its capability to match real morphologies. To do the estimate of the distortion, the AC/DC Module of COMSOL has been employed, using a model of homogeneous resistivity on which a DEM (Digital Elevation Model) profile of the Deep Freeze ...

Elasto-Plastic FEM Models Explain the Emplacement of Shallow Magma Intrusions in Volcanic Complexes

A. Bistacchi[1]
[1]Università degli Studi di Milano Bicocca, Milano, Italy

We present numerical models and field data that aid understanding of volcano-tectonic processes related to the propagation of inclined sheets and dykes under a stress field resulting from the inflation of a shallow magma chamber. Structural field data from the classical Cuillins cone-sheet complex (Isle of Skye) show that sheets have a constant average dip angle (45°), with pure dilational or ...

CO2 Storage Trapping Mechanisms Quantification

A. Nardi[1], E. Abarca[1], F. Grandia[1], J. Molinero[1]
[1]Amphos 21, Barcelona, Spain

The capture and storage of CO2 in deep geological formations is one of the proposed solutions to reduce CO2 emissions to the atmosphere. CO2 is injected as a supercritical fluid deep below a confining geological formation that prevents its return to the atmosphere. In general, four trapping mechanisms are expected, which are of increasing importance through time: (1) structural, (2) residual ...

Impact Assessment of Hydrologic and Operational Factors on the Efficiency of Managed Aquifer Recharge Scheme

M.A. Rahman[1], P. Oberdorfer[1], Y. Jin[1], M. Pervin[1], E. Holzbecher[1]
[1]Department of Applied Geology, Geoscience Center, University of Göttingen, Göttingen, Lower Saxony, Germany

Due to increased demands on groundwater accompanied by increased drawdowns (ca. 2-3 meters/year), technologies that use alternative water resources have been suggested for Dhaka City, Bangladesh. Preliminary studies show that managed aquifer recharge (MAR) would help in optimal use of available water resources and to reduce adverse effects of pumping in the Dupitila aquifer of the city. In this ...

3D Simulations of an Injection Test Done Into an Unsaturated Porous and Fractured Limestone

A. Thoraval[1], Y. Guglielmi[2], F. Cappa[3]
[1]INERIS, Nancy, France
[2]CEREGE, Aix-en-Provence, France
[3]GEOAZUR, Valbonne, France

We have developed a numerical model to represent the effect of injection test in unsaturated porous and fractured rock mass. The test was conducted at the LSBB (Laboratoire Souterrain à Bas Bruit) site close to Rustrel, Vaucluse, France in the field of the French ANR project called “HPPP-CO2”. The results underline the impact of fractures on the hydro-mechanical response of the rock-mass. Indeed ...

New Thermo-Mechanical Fluid Flow Modeling of Multiscale Deformations in the Levant Basin

M. Belferman [1], R. Katsman [1], A. Agnon [2], Z. Ben-Avraham [1],
[1] The Dr. Moses Strauss Department of Marine Geosciences, Leon H.Charney School of marine sciences. Haifa University, Mt. Carmel, Haifa, Israel
[2] Institute of Earth Sciences, The Hebrew University, Jerusalem, Israel

The Levant has been repeatedly devastated by numerous earthquakes since prehistorical times. In order to understand the role of the dynamics of the water bodies in triggering the deformations in the Levant basin, a new theoretical thermo-mechanical model is constructed and extended by including a fluid flow component, in COMSOL Multiphysics simulation environment. The latter is modeled on a ...