Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Early Breast Cancer Detection using Patient Symptomatic Breast Images by Finite Element Analysis Aided by COMSOL

Tan Ming Sien[1]
Devendran Perumal[1]
Sri Pooveyninthran[1]
Samavedham Lakshminarayanan[2]
Balu Ranganathan[3]

[1]Department of Chemical and Natural Resources Engineering, University of Malaysia Pahang, Pahang, Malaysia
[2]Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
[3]Center for Excellence for Fluid Flow Research, University of Malaysia Pahang, Pahang, Malaysia

In this project, we attempted to determine the drug concentration in a breast cancer tumor after a drug has been delivered. We created a COMSOL Multiphysics® finite element model. We investigated the relationship between drug delivery efficiency and parameters such as diffusivity, deepness of the tumor, and the temporal and spatial placement of the transdermal patch that delivers the drug. We ...

Optimization of the Herringbone Type Micromixer Using Numerical Modelling and Validation by Measurements - new

E. Tóth[1], K. Iván[1], P. Fürjes[2]
[1]Pázmány Péter Catholic University, Budapest, Hungary
[2]Research Centre for Natural Sciences Institute for Technical Physics and Materials Science Hungarian Academy of Sciences, Budapest, Hungary

COMSOL Multiphysics® software was used in this study to simulate mixing by diffusion and by secondary flow. Particle tracing model was applied to simulate the mixing of cells in the microchannel. Results agreed well with the measurement, an optimal herring-bone structure was proposed for integration into a bioanalytical system.

Low Pt Cathodes for High Performance PEMFCs: Modeling and Experiments

F. Daouda[1], J. Hamelin[1], P. Benard[1], S. Kumar Natarajan [1]
[1]Insitut de recherche sur l'hydrogène, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada

We present a novel multi-layered electrode fabrication technique for polymer electrolyte membrane fuel cells (PEMFCs). This method consists of alternate layers of Pt deposition (0.05 mg/cm²) by sputtering on the painted multi-walled carbon-Nafion layer (CNL) with larger concentration of catalyst particles closer to the membrane. Parametric models were developed and validated by experimental ...

Simulating HFIR Core Thermal Hydraulics Using 3D-2D Model Coupling

A. Travis[1], K. Ekici[1], J. Freels[2]
[1]The University of Tennessee, Knoxville, TN, USA
[2]Oak Ridge National Laboratory, Oak Ridge, TN, USA

A model utilizing interdimensional variable coupling is presented for simulating the thermal hydraulic interactions of the High Flux Isotope Reactor (HFIR) core at Oak Ridge National Laboratory (ORNL). The model’s domain consists of a three-dimensional fuel plate and a two-dimensional coolant channel slice. In simplifying the coolant channel, the computational cost and solution time are both ...

Change in the Flow Rate Through a Deformed Valve

D. Kekejian[1], Y. Martinez[1]
[1]ITESO, Tlaquepaque, Jalisco, Mexico

In this work, a new design is suggested which functions both as a pipe for fluid transfer and as a valve which decreases the flow of the fluid in the opposite direction in case there are pressure fluctuations in the pipe. Therefore, we call it a "Deformed Valve". To design the structure, we had to use different geometric shapes and calculate the velocity of the fluid for each shape to determine ...

Efficient Heat Management Technique for Electronic Display Device

U. Shukla[1], and D. Gupta[1]
[1] Department of Materials and Metallurgical Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh, India

One of the major challenges faced by the semiconductor industry is that electronic circuits produce a lot of heat energy during their operation. And with the current scenario where the gates are packed so much close together, then the problem of heat generation has become extremely significant. So we are working towards the efficient heat management and dissipation solution for the heat ...

FEM Analysis of Contaminant Transport in a Loamy Desert Soil

B. Agasanapura, C. Nesbitt, and M. Misra
Chemical and Metallurgical Engineering, University of Nevada, Reno, Nevada, USA

In the present work, transport and adsorption of contaminants (lead, cesium) on loamy desert soil was modeled using the Finite Element Method (FEM). The Advective dispersion reaction mechanism was employed to describe the contaminant transport in soil medium. A partial differential equation (PDE) obtained from unsteady mass balance was developed using convective diffusion, solute adsorption, and ...

Modelling and Simulation of a Three-stage Air Compressor Based on Dry Piston Technology

M. Heidari, and P. Barrade
EPFL
Lausanne, Switzerland

The core of this modelling is to study heat transfer and fluid dynamics processes for a compression expansion system, and the main particularity is that heat transfer and air movement are due to the movement of the piston. We have implemented a \"moving mesh\" solver to compute the volume changes of the compression chamber followed by a \"Fluid dynamics\" type solver. It allows correct ...

Atmospheric Icing of Transmission Line Conductor Bundles

T. Wagner[1], and U. Peil[2]
[1]International Graduate School of Risk Management of Natural and Civilization Hazards on Buildings and Infrastructure, Braunschweig, Germany
[2]Institute of Steel Structures, Technical University Braunschweig, Braunschweig, Germany

Hazardous for the transmission lines is not only the static ice load, but also the aerodynamic instability of iced cables. It can lead to large amplitude oscillations at low frequencies. Also,  twisting due to asymmetrical iced cables may increase the fatigue rate. In extreme events, atmospheric icing can cause severe damage on towers and power lines, resulting in extensive electricity ...

Modeling an Oscillating Water Foil for Hydro-kinetic Power Generator Using COMSOL 3.5a

R. Kallenberg[1], R. Han[2], and J. Cherry[2]
[1]Kallenberg Enterprises, Fairbanks, AK, USA
[2]University of Alaska Fairbanks, Fairbanks, AK, USA

The research team has devised and patented an oscillating, hydro-kinetic power-generating device for use in river and tidal environments. The interaction of water and the designed foil in a straight rectangular turbulent channel is modeled explicitly using two conservation laws: conservation of momentum and conservation of mass. The incompressible Navier-Stokes application mode in COMSOL 3.5a ...