Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Numerical Modeling and Performance Optimization Study of a Diaphragm Pump for Medical Application

I. Lupelli[1], P. Gaudio[1], A. Malizia[1], R. Quaranta[1]
[1]Department of Industrial Engineering, University of Rome “Tor Vergata”, Roma, Italy

In this contribution we present the results of the numerical modeling and performance optimization study of a diaphragm pump for drug infusion. The main objective is to develop a numerical model that replicates the pumping cycle (400ms) and also provides indications about the variation of pumping performance as consequence of the variation of the chamber-diaphragm system geometry, diaphragm ...

Three-Dimensional Numerical Study of the Flow Past a Magnetic Obstacle

M. Rivero[1], O. Andreev[2], A. Thess[3], S. Cuevas[4], T. Fröhlich[1]
[1]Institute of Process Measurement and Sensor Technology, Ilmenau University of Technology, Ilmenau, Germany
[2]Helmholtz-Zentrum Dresden-Rossendorf e. V., Institut für Sicherheitsforschung Abteilung Magnetohydrodynamik, Dresden, Germany
[3]Institute of Thermodynamics and Fluid Mechanics, Ilmenau University of Technology, Ilmenau, Germany
[4]Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Temixco, Morelos, México

Flows of electrically conducting liquids in external magnetic fields are present in several applications. In this kind of flow, the inhomogeneous magnetic field creates a breaking force on the conducting fluid. As a result, a stagnant zone is formed in the zone affected by the localized field so that the fluid flows around it. Wakes in magnetohydrodynamic flows present interesting challenges ...

Development of a New Blade Profile for a Vertical Axis Wind Turbine

S. Yoshioka[1]
[1]Ritsumeikan University, Shiga, Japan

The vertical axis wind turbine design depicted in (Fig.1) is widely considered a wind turbine of a wind power generation system because it can be easily miniaturized, it generates low noise, and it rotates regardless of wind direction. The vertical axis wind turbine has, however, low rotation performance when compared with that of a horizontal axis wind turbine. Therefore, we need to improve the ...

Numerical Quasi Stationary and Transient Analysis of Annular Linear Electromagnetic Induction Pump

L. Goldsteins[1], L. Buligins[2], Y. Fautrelle[3], C. Biscarrat[1], S. Vitry[1]
[1]CEA Cadarache, Saint Paul lez Durance, France
[2]University of Latvia, Riga, Latvia
[3]Grenoble Institute of Technology, Grenoble, France

In this paper an axisymmetric model of annular linear electromagnetic induction pumps using numerical methods and four approaches (two transient and two quasi-stationary) with different complexity is studied. Comparison of integral characteristics is performed between numerical approaches and also with analytic estimations. Distributions of physical parameters over length and height of channel ...

Metal Foam Tube Flow Characterisation

T. Spillmann[1]
[1]CSIRO, Energy Technology, Newcastle, New South Wales, Australia

In this study the flow through a tube filled with highly porous aluminium foam of three different pore sizes is analysed using COMSOL Multiphysics® CFD Module and compared to experimentally determined pressure drop data. Analyzing the flow through an array of pores allow the deduction of characteristic flow parameters (permeability and form drag coefficient) that are utilized in a 2D ...

Evaporation Induced Convection Under a Gas Channel

H. Machrafi[1], A. Rednikov[2], P. Colinet[2], P.C. Dauby[1]
[1]University of Liège, Thermodynamics of Irreversible Phenomena, Institut de Physique, Liège, Belgium
[2]Universite Libre de Bruxelles, TIPs - Fluid Physics, Bruxelles, Belgium

This work falls into the framework of an ESA experiment, which consists of observing the behavior of patterns and structures that can be formed after instability onset in a HFE7100 liquid layer, evaporating into a nitrogen gas flow. This study is performed by a three-dimensional numerical simulation of the transient temperature and fluid motion. The results show that first several small rolls ...

Annealing Furnaces Modelisation for Photovoltaïc Applications

J. Givernaud[1]
[1]EMIX, St Maurice La Souterraine, France

The optimisation of dimensions, materials choice of heaters in annealing furnaces are done with COMSOL Multiphysics® in 2D-axisymetry. Heat losses sources are identified and corrective actions can be taken in function of simulation results. A power saving of more than 50% is achieved thanks to simulations.

Validation for a Quick and Reliable Procedure for Centrifugal Pumps Using Frozen Rotor Methodology in COMSOL Multiphysics®

D. Manenti[1], G. Tanghetti[1], R. Roveglia[1]
[1]Metelli SPA, Cologne (BS), Italy

Single stage centrifugal pumps are widely used in several engineering fields such as: room conditioning, energetic cycles, automotive industry, home care, etc. Thus, the possibility of simulate their behaviour, in terms of pressure increase and mass flow rate, is helpful in reducing prototyping costs in the first design stages. The Rotating Machinery Interface is a dedicated tool implemented ...

Investigating the Impacts of Hydrogeological Parameters on DSI Efficiency through Numerical Simulation

Y. Jin[1], E. Holzbecher[1], S. Ebneth[2]
[1]Department of Applied Geology, GZG, Georg-August- University of Göttingen, Göttingen, Germany
[2]Hölscher Wasserbau, Haren, Germany

Düsensauginfiltration (DSI),‘nozzle-suction-infiltration’, is a new method for dewatering that avoids groundwater abstraction from the aquifer. Drawdown is achieved via pumping of groundwater at upper abstraction section, meanwhile, all the pumped water is injected through the same borehole, but in greater depth. We use COMSOL Multiphysics® for the development of a 2D model that simulates ...

Modeling the Effect of Headspace Steam on Microwave Heating of Mashed Potato - new

J. Chen[1], K. Pitchai[1], D. Jones[1], J. Subbiah[1]
[1]University of Nebraska-Lincoln, Lincoln, NE, USA

Introduction: Domestic microwave ovens are widely used to heat food products, because of rapid and convenient heating. Nonuniform heating is the biggest issue in microwave heating process, which also causes food quality and safety issues. Microwave heating models are promising tools to assist in developing food products that deliver uniform heating. Due to intensive heating, moisture evaporation ...