Quick Search

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Mixing Layer Analysis in Variable Density Turbulent Flow

A.E. Alshayji[1]
[1]Department of Mechanical Engineering, College of Engineering and Petroleum, Kuwait University, Safat, Kuwait

In this study, numerical simulations of mixing in turbulent flow, subject to a change in density, are performed. Attention is focused on the binary mixing between two streams of fluid in which a variable density step are formed due to a difference in the temperature. This binary mixing problem performed by assuming low Mach number flow. The results demonstrate the variable density effects and ...

Validation for a Quick and Reliable Procedure for Centrifugal Pumps Using Frozen Rotor Methodology in COMSOL Multiphysics®

D. Manenti[1], G. Tanghetti[1], R. Roveglia[1]
[1]Metelli SPA, Cologne (BS), Italy

Single stage centrifugal pumps are widely used in several engineering fields such as: room conditioning, energetic cycles, automotive industry, home care, etc. Thus, the possibility of simulate their behaviour, in terms of pressure increase and mass flow rate, is helpful in reducing prototyping costs in the first design stages. The Rotating Machinery Interface is a dedicated tool implemented ...

Numerical Simulation of Carbon Steel Corrosion Exposed to Flowing NaCl Solutions Through an Annular Duct - new

A. Soliz[1], K. Mayrhofer[1], L. Caceres[2]
[1]Department of Interface Chemistry & Surface Engineering, Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany
[2]Department of Chemical Engineering, University of Antofagasta, Antofagasta, Chile

A three-dimensional mathematical model under stationary conditions have been established to understand the corrosion of carbon steel cylindrical samples immersed in flowing NaCl solution through an annular duct. The migration, diffusion and convection mass transfer mechanisms were solved using the Nernst–Planck equation coupled to the Navier-Stokes equation. A corrosion model based on the mixed ...

Wall Effect on A Spherical Particle Settling along The Axis of Cylindrical Tubes Filled with Carreau Model Fluids

D. Song[1], R. Gupta[1], and R. Chhabra[2]
[1]Dept. of Chemical Engineering, West Virginia University, Morgantown, WV
[2]Indian Institute of Technology, Kanpur, India

The effect of finite boundaries on the drag experienced by a rigid sphere settling along the axis of cylindrical tubes filled with Carreau model fluids has been examined systematically over a wide range of condition. As expected, the presence of finite boundaries leads to an increase in the drag force exerted on a falling sphere thereby retarding its descent due to the obstruction caused by ...

Behavior Models of Virtual Impactors

R. Haft[1]
[1]Lawrence Berkeley National Laboratory, Hayward, CA, USA

A pocket-size portable particle size detector for diesel and cigarette smoke aerosols is being designed using particle size and composition methods. Aerodynamics, fluid properties, material composition and aerosol composition are taken into account. Testing methods for the design include using an impactor and virtual impactor with two quartz crystal resonators to determine particle composition ...

Application of COMSOL Multiphysics in the Simulation of Magnesium Refining and Production

X. Guan[1], E. Gratz[1], U. Pal[1]
[1]Division of Materials Science and Engineering, Boston University, Brookline, MA, USA

Computational fluid dynamics (CFD) modeling is a useful tool to gain an insight into various high temperature metallurgical processes such as the magnesium refining and the magnesium solid oxide membrane (SOM) electrolysis. In both processes, argon gas was used to stir the molten salt (flux) in order to improve the transport of magnesium vapor out of the flux and achieve chemical homogeneity in ...

Modeling of the Reduction Stage during the Continuous Refining of Copper in a Packed Bed Reactor

F. Mansilla[1], L. Voisin [2]
[1]Advanced Mining Technology Center, Chile University, Santiago, Chile
[2]Department of Mining Engineering, Advanced Mining Technology Center, Chile University, Santiago, Chile

Throughout history, the copper pyrometallurgical processes have been carried out mostly in discontinuous or batch systems. In recent decades new continuous technologies have been developed but focused only on Smelting and Converting stages leaving aside the Refining one. In 2002 a novel technology was proposed by the Department of Mining Engineering of Chile University which consists in two ...

Computer-aided Design of the Heating Section of a Continuous Kheer (Rice Pudding)-making Machine

S. Kadam[1], T. Gulati[2], A. Datta[1]
[1]Indian Institute of Technology, Kharagpur, India
[2]Cornell University, Ithaca, NY, USA

Kheer is a popular Indian dairy dessert prepared from concentrating milk with simultaneous cooking of rice grains. Conventional methods of preparing kheer have limited its mechanized production. Therefore, a conceptual design of continuous kheer-making machine has been prepared which among other components consists of a heating section for cooking kheer. The present study investigates the CFD ...

Optimization of Extrusion Processes for non-Newtonian high-Viscous Fluids with Wall Slip and Shear Thinning Effects

W. Hoffmann[1], M. Scholz[1]
[1]SiCo-Solutions, Stuttgart, Germany

Simulation of the flow behaviour of non-Newtonian fluids with high viscosities leads to special material models with specific material parameters. In this presentation, a material model consisting of 4 material parameters describing the flow itself and also the wall slip is presented. The investigations of the flow behaviour are based on COMSOL Multiphysics® using the Modules CFD, Structural ...

Groundwater Modeling as an Assessment Tool for Underground Mines Located in Fractured Massifs

J. Font-Capó[1], A. Nardi[1], M. Mendoza [2], E. Ruiz[2], S. Jordana[1], J. Molinero[1], P. Trinchero[1], J. Vargas[3]
[1]Amphos 21 Consulting, Barcelona, Spain
[2]Amphos 21 Perú, Lima, Perú
[3]Worley Parson/TWP, Lima, Perú

Some of the present metallic ores mines are located in areas formed by a heterogeneous fractured massif where groundwater flows preferentially through fractures. Underground mining in these zones can cause impacts in streams, lakes and change the natural water balance of the watersheds, leading to conflicts between traditional uses of water and the mining activity. Quantification of these ...