Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Virtual Commissioning of Large Machines with COMSOL Multiphysics® Software

K. Kryniski [1], A. Trangard [1],
[1] ABB Corporate Research, Västerås, Sweden

In addition to using advanced functions built-into the engine of the COMSOL Multiphysics® software, we integrate dynamic properties of rotating components that are measured or pre-computed. Here, it is shown how to integrate fluid-film characteristics and take advantage of post-processing and graphics to present the results to the customers using the Cloud. COMSOL® simulations of rotor-bearing ...

Effects of Shear-thinning and Elasticity in Flow around A Sphere in A Cylindrical Tube

D. Song[1], R.K. Gupta[1], and R.P. Chhabra[2]
[1]West Virginia University, Morgantown, WV, USA
[2]Indian Institute of Technology, Kanpur, India

A sphere sedimenting in a cylindrical tube filled with non-Newtonian fluids, including purely viscous and viscoelastic type, is of both practical and fundamental interest. To investigate the effects of shear-thinning and elasticity, four representative constitutive equations are adopted, Newtonian, Carreau, Oldroyd-B and Phan-Thien-Tanner (PTT) models. There is good agreement between our ...

Computational Study on Transition of Oil-Water Flow Morphology due to Sudden Contraction in Microfluidic Channel - new

J. Chaudhuri[1], S. Timung[1], T. K. Mandal[1], D. Bandyopadhyay[1]
[1]Indian Institute of Technology Guwahati, Guwahati, Assam, India

The flow morphology of two immiscible fluids in a microfluidic device finds numerous applications such as emulsification, synthesis of nanomaterials [1], lab-on-a-chip devices and biological analysis [2]. It offers many advantages over the conventional macroscopic devices because of its availability for higher surface to volume ratio, ability to handle small volume of fluids, easier process ...

Simulation of Flow in a Rectangular Channel of a PEM Fuel Cell

A. L. R. Paulino [1], E. Robalinho [2], E. F. Cunha [1], M. Linardi [1], R. R. Passos [3], E. I. Santiago [1]
[1] Instituto de Pesquisas Energéticas e Nucleares – IPEN/CNEN, São Paulo, SP, Brazil
[2] Instituto de Pesquisas Energéticas e Nucleares – IPEN/CNEN, São Paulo, SP, Brazil; and Instituto Federal do Rio Grande do Sul – IFRS, Porto Alegre, RS, Brazil
[3] Universidade Federal do Amazonas – UFAM, Manaus, AM, Brazil

The performance of a PEMFC depends on several factors, including the flow inside gas channels. Low gas velocity inside the channel can make water management more difficult, possibly causing water to accumulate and condense in certain regions of the cell. In the present work, COMSOL Multiphysics software was used to visualize and describe gas flow inside the channel of a PEMFC operating with ...

Development of a Single Cell Trapping Microfluidic Device

L. Weng [1], F. Ellett [1], J. F. Edd [1], M. Toner [1,2],
[1] Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
[2] Shriners Hospital for Children, Boston, MA, USA

Array-based technologies are important for many applications in drug discovery, microbiology and cell biology. A large-scale array of single cells allows high-throughput monitoring of behaviors of individual cells in parallel, avoiding the lack of cell specificity inherent to bulk measurement methods. Here, we designed a passive-pumping microfluidic device for trapping cells in an array and used ...

Process Modeling and Optimization of Design Parameters in a Falling Film Plate and Frame Evaporator

A. Donaldson [1], A. Thimmaiah [2],
[1] Dalhousie University, Halifax, Nova Scotia, Canada
[2] National Institute of Technology Karnataka, Mangalore, Karnataka, India.

COMSOL Multiphysics® software is used to explore the impact of distributor width on the film thickness, and the resulting sensitivity of overall thermal efficiency in a plate and frame triple-effect evaporator. A stable film is crucial to maintain a minimum wetting rate, to circumvent the “dry-out condition”. The hydrodynamics of stable film development as a function of distributor width was ...

An Analysis of Heat Conduction with Change of Phase with Application to the Solidification of Copper

J. Michalski[1], and E. Gutirrez-Miravete[2]
[1]Hamilton-Sundstrand
[2]Rensselaer at Hartford, Hartford, Connecticut, US

The goal of this study was to determine the possibility of using the finite element in COMSOL Multiphysics program to obtain a high accuracy solution to a moving boundary problem, specifically, the solidification of copper. A one-dimensional geometry in Cartesian coordinates was used to investigate the solidification of initially liquid copper from a chilled wall maintained at fixed temperature. ...

Studying PEM Fuel Cells using Equation Based Simulation

J. Blackburn [1], N. McCartney [1],
[1] National Physical Laboratory, London, UK

We present computer simulation results for PEM fuel cells using COMSOL Multiphysics® software. We have developed novel PDE equations at NPL from first principles and these are more realistic than models typically used in literature. The theory includes Maxwell-Stephan and Nernst-Planck equations for the diffusion and electrochemistry as well as equations governing electrostatic and stress/strain ...

Aerodynamic Analysis of a Ski Jumper: a CFD Approach

R. Latchman [1], A. Pooransingh [1],
[1] The University of the West Indies, St. Augustine, Trinidad and Tobago

At the 2006 Winter Olympics, the jump length difference between first and second place was only 5cm. This illustrates why ski jumpers are constantly tinkering with their posture in order to gain even the smallest of advantages. Experiments such as those shown in Figures 1 and 2 (b), conducted with ski jumpers in large-scale wind tunnels showed that even small changes in position can lead to ...

Effect of Viscosity of Food on Digestion and Nutrient Absorption in the Human Small Intestine

J. S. Karthikeyan [1], D. Salvi [1], M. V. Karwe [1],
[1] Rutgers University, New Brunswick, NJ, USA

Digestion is the process of breaking down food into smaller components, by mechanical and enzymatic action in the digestive tract, so that the smaller nutrient molecules can be more easily absorbed in the intestinal tract. To study and analyze the human digestive process, different methodologies have been used in the past. In general, in vivo feeding studies with humans provide the most accurate ...