Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Coupled Electric-Thermal-Fluid Analysis of High Voltage Bushing

G. Eriksson[1]
[1]ABB, Corporate Research, Västerås, Sweden

Modern power transmission systems are in general designed to operate at high voltages in order to reduce resistive losses generated by high currents. This, however, tends to increase the risk for dielectric breakdown or flashovers if the equipment is not properly designed to withstand the stress. The present work illustrates how multiphysics simulations can be used to analyze and predict the ...

Modeling Voltammetry of a Rotating Disk Electrode

A. Giaccherini [1], A. Lavacchi [2],
[1] INSTM, Firenze, Italy
[2] ICCOM - CNR, Firenze, Italy

In this work we report a numerical model of a Rotating Disk Electrode (RDE) voltammetry in a finite size domain. Thus, explaining the discrepancy of the diffusion coefficient obtained from the experimental rotating speed, with respect to the literature data. We achieved a very good agreement at the limiting current and at the unexpected peak for the RDE voltammetry at 2000 rpm and different ...

Model of Pressure Drop Separation during Aqueous Polymer Flow in Porous Media

D. C. Raharja [1], R. E. Hincapie [1], M. Be [1], C. L. Gaol [1], L. Ganzer [1],
[1] Clausthal University of Technology, Clausthal-Zellerfeld, Germany

Aqueous polymers used for enhanced oil recovery (EOR) application is considered a complex fluid. It can exhibit Newtonian and Non-Newtonian behavior depending on the velocity or the stresses that it is submitted during the flooding process. Therefore, the polymer flooding project requires a detailed understanding of chemical and physical process occurred in the porous subsurface reservoir, ...

Analysis and Optimization of Dragonfly Wing Using COMSOL Multiphysics® Software

A. Kumar [1], C. Kaur [1], S. S. Padhee [2],
[1] PEC University of Technology, Chandigarh, India
[2] IIT Ropar, Punjab, India

This paper explores the complexities of a dragonfly's flapping wing motion. It includes the literature as well as analytical results using simulations done in COMSOL Multiphysics® software. The study depicts the Fluid-Structure Interaction of the 2D wing (airfoil) with air, governed by Naiver-Stokes equations. The wing follows mathematical functions and is given motion similar to dragonfly's ...

Single Phase Flow Models in Fractal Porous Media Using a Fractal Continuum Mechanics Approach

E. Linares-Pérez [1], M. Díaz-Viera [1, 2],
[1] Instituto de Geofísica, Universidad Nacional Autónoma de México, Coyoacán, DF, México
[2] Instituto Mexicano del Petróleo, Ciudad de México, DF, México

The primary motivation of this work was to develop flow models in porous media with fractal properties to represent the anomalous behavior observed in some pressure tests in naturally fractured reservoirs.

Numerical Modeling and Verification of Acoustic Streaming Induced by Ultrasonic Treatment

D. Rubinetti [1], D. A. Weiss [1], J. Müller [2], A. Wahlen [2],
[1] Institute of Thermal and Fluid Engineering, University of Applied Sciences Northwestern Switzerland, Windisch, Switzerland
[2] Institute of Product and Production Engineering, University of Applied Sciences Northwestern Switzerland, Windisch, Switzerland

Acoustic streaming (AS) describes a physical phenomenon where an oscillating sound emitter induces a steady fluid motion. Metal processing industry applies this treatment for grain morphology adjustments during the solidification of metal. Improvement and further development of this technique focus on numerical modeling to reduce substantial costs for test rigs and field tests. This study ...

Pore-Scale Phase Field Model of Two-Phase Flow in Porous Medium

I. Bogdanov, S. Jardel, A. Turki, and A. Kamp
Open & Experimental Centre for Heavy Oil, University of Pau, Pau, France

Pore-scale modeling of multiphase flow through porous media is addressed most frequently to improve our understanding of flow and transport phenomena in such settings. It can be used to obtain macro-scale constitutive equations, to assign multiphase flow properties in large scale models, to predict how these properties may vary with rock type, wettability, etc. The description of a physical ...

Change in the Flow Rate Through a Deformed Valve

D. Kekejian[1], Y. Martinez[1]
[1]ITESO, Tlaquepaque, Jalisco, Mexico

In this work, a new design is suggested which functions both as a pipe for fluid transfer and as a valve which decreases the flow of the fluid in the opposite direction in case there are pressure fluctuations in the pipe. Therefore, we call it a "Deformed Valve". To design the structure, we had to use different geometric shapes and calculate the velocity of the fluid for each shape to determine ...

Numerical Study and Simulation in COMSOL Multiphysics of the Dilution Process during Dust Sampling in Dry Machining

B. Wenga-Ntcheping[1], A. Djebara[1], R. Kamguem[1], J. Kouam[1], V. Songmene[1]
[1]University of Quebec-École de Technologie Supérieure, Montreal, Canada

Dilution’s issue during dry machining have raised the interest’s environmental researchers and engineers. In fact, the sampling of dust emitted during dry machining was a serious problem for air quality evaluation at the workplace. Furthermore, the best sampling of fine and ultrafine particles produced during material cutting, passed through the dilution of high particle concentration (number, ...

COMSOL Multiphysics® 在热发电用真空集热管设计中的应用

赵旭山 [1], 郝雷 [1], 蒋利军 [1], 米菁 [1], 杨海龄 [1],
[1] 北京有色金属研究总院,北京,中国

随着能源紧张、油价攀升,环境污染严重,利用可再生绿色能源又成为不懈努力的方向。槽式太阳能热发电技术具有兼容性强、对电网冲击小、性价比高、发电成本低、可存储可调度等特点,近年来得到了迅猛发展,其核心部件为高温太阳能真空集热管,如图1所示。本研究利用 COMSOL Multiphysics® 针对真空集热管真实工况下的动态过程开展研究,并在此基础上开展集热管结构的优化设计。 由图1可知:集热管在电站中服役工况下,槽面会聚的太阳光主要集中于集热管下半面,上半面接收的会聚太阳光较少;导热工质自吸收管一端进入,接收会聚太阳光辐照能量,从吸收管另一端流出,流入→流出过程中,导热工质被加热;集热管外表面与外部环境通过热辐射和对流两种方式换热;吸收管与玻璃罩管间形成的环形密闭高真空区域各内表面通过热辐射换热,不考虑对流;集热管两端支撑固定于聚光器上,由于本身自重和热应力 ...