See How Multiphysics Simulation Is Used in Research and Development


Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2018 Collection
Acoustics and Vibrationsx

Determination of the Mechanical Properties in the Avian Middle Ear by Inverse Analysis new

P. Muyshondt[1], J. Soons[1], D. de Greef[1], J. Peacock[1], J. Dirckx[1]
[1]University of Antwerp, Antwerp, Belgium

The middle ear of birds is a fascinating mechanical system, as it contains only one bony ossicle, compared to three in mammals, yet its auditory performance is not substantially worse. Its design resembles some currently used middle ear prostheses, so the understanding of its working ... Read More

Two-Dimensional FEM Analysis Of Brillouin Gain Spectra In Acoustic Guiding And Acoustic Antiguiding Single Mode Optical Fibers

Y.S. Mamdem[4], X. Pheron[2], F.Taillade[3], Y. Jaouën[4], R. Gabet[4], V. Lanticq[1,3], G. Moreau[1], A. Boukenter[5], Y. Ouerdane[5], S. Lesoille[3], and J. Bertrand[2]
[1]EDF R&D, Chatou, France
[2]ANDRA, Chatenay-Malabry, France
[3]LCPC, Paris, France
[4]Telecom ParisTech, Paris, France
[5]Laboratoire Hubert Curien, Saint-Etienne, France

We present a full modal -analysis of optical and acoustic properties based on two-dimensional finite-element method (2D-FEM) for Brillouin Gain spectrum (BGS) determination in optical fibers with COMSOL. This model enables us to predict precisely the BGS of any kind of silica fiber ... Read More

Increasing Heat Transfer in Microchannels with Surface Acoustic Waves new

S. Berry[1]
[1]Massachusetts Institute of Technology: Lincoln Laboratory, Lexington, MA, USA

In this numerical study, surface acoustic waves (SAWs) are evaluated as a potential disruptive flow technology for enhancing heat transfer in microchannels. Using COMSOL Multiphysics® software, the physics governing acoustics, single-phase-fluid flow and heat transfer are coupled. The ... Read More

Ultrasound-assisted Microfluidic Devices: Insights and Optimization of Sono-microreactors

F. J. Navarro-Brull [1], P. Poveda [2], J. Ramis [2], R. Gómez [1],
[1] Departament de Química Física, Universidad de Alicante, Alicante, Spain
[2] Departament de Física, Enginyeria de Sistemes i Teoria del Senyal, Universidad de Alicante, Alicante, Spain

Possible drawbacks of microreactors are inefficient reactant mixing due to the predominance of laminar flow and clogging (when solid-forming reactions are performed or solid catalyst suspensions are used). Ultrasound has been successfully implemented not only to prevent these problems ... Read More

Topology Optimization of a Gaseous Photoacoustic Spectroscopy Cell Using COMSOL Multiphysics®

R. Haouari [1], V. Rochus [2], L. Lagae [1], X. Rottenberg [2],
[1] Imec & KU Leuven, Leuven, Belgium
[2] Imec, Leuven, Belgium

It is known that photoacoustic spectroscopy shows the highest signal-to-noise ratio compared to other spectroscopy techniques. This is due to an orthogonal detection scheme: while exciting with light we monitor soundwaves. In gaseous phase, the use of an acoustic chamber called cell ... Read More

FEM Simulation of Generation of Bulk Acoustic Waves and their Effects in SAW Devices

A.K. Namdeo[1], N. Ramakrishnan[2], and H.B. Nemade[1]
[1]Department of Electronics and Communication Engineering, Indian Institute of Technology Guwahati, Guwahati, India
[2]Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, India

This paper presents finite element method (FEM) simulation study of the generation of bulk acoustic waves (BAWs) and their effect on the performance of surface acoustic wave (SAW) devices, using COMSOL Multiphysics. A SAW delay line structure using YZ-cut lithium niobate substrate is ... Read More

Simulation of an Ultrasonic Immersion Test for the Characterization of Anisotropic Materials

A. Castellano[1], P. Foti[1], A. Fraddosio[1], S. Marzano[1], M.D. Piccioni[1], D. Scardigno[1]
[1]DICAR, Politecnico di Bari, Bari, Italy

Introduction: Improving the capability of nondestructive evaluations requires the analysis of suitable models dealing with the physical and mechanical phenomena involved in the experiments. For example, ultrasonic tests may be a powerful, fast and effective method for nondestructive ... Read More

FEM Analysis of Flamelet Wrinkling in a Diffusion Flame new

Y. Li[1], T.C. Lieuwen[2], J. Zhou[1], H. Cao[1]
[1]Zhengzhou University, Zhengzhou City, Henan Province, China
[2]Georgia Institute of Technology, Atlanta, GA

One can hardly get the exact analytic solution of a full time-dependent convection-diffusion equation, for describing the dynamics of a non-premixed flamelet. The analytic solution of the linearized form with such a model was studied by MATLAB®. And also, a numerical computation was made ... Read More

Modal Analysis of Microcantilever Response to Sine Wave Excitation Using Vibrational Speaker

M. Satthiyaraju [1], T. Ramesh [1],
[1] National Institute of Technology, Tiruchirappalli, Tamil Nadu, India

The dynamic response of microcantilever, which is a simple microelectromechanical system (MEMS) structure, to sine wave excitation is studied using the vibrational speaker set up in the atmospheric damping. Microcantilever is fabricated using micro wire cut EDM process for high ... Read More

Topology Optimization of Thermoviscous Acoustics in Tubes and Slits with Hearing Aid Applications

R. Christensen [1],
[1] GN ReSound A/S, Ballerup, Copenhagen, Denmark

When acoustic applications include small geometries, i.e. mm/submillimeter range, so-called thermoviscous effects can greatly affect the pressure response. This paper deals with acoustic topology optimization of such miniature structures with thermoviscous effects taken into account. ... Read More