Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling of Near-Field Ultrasonic Levitation: Resolving Viscous and Acoustic Effects

I .F. Melikhov [1], A. S. Amosov [1], S. A. Chivilikhin [2],
[1] Corning Scientific Center, Saint Petersburg, Russia
[2] ITMO University, Saint Petersburg, Russia

Ultrasonic levitation is a novel technology for contactless handing of various objects. It is already used in various manufacturing processes where it is important to keep untouched surface. In this paper we introduce a model of so-called near-field ultrasonic levitation which allows flying heights of the hundred-micron order. Our model computes air flow in the gap between a vibration source and ...

Modeling and Testing of Carbon-Fiber Doubly-Resonant Underwater Acoustic Transducer

A. Morozov[1]
[1]Teledyne Technologies Inc., Falmouth, MA, USA

This paper describes the COMSOL Multiphysics® simulation and the test of a low-frequency (500Hz) sound source for long-range acoustic communications. This design uses innovative carbon-fiber composite materials.To meet the demand for the frequency range the doubly resonant organ pipe resonator was suggested. A multi-resonant system usually needs a precise, complicated adjustment of its ...

Modal Analysis of Microcantilever Response to Sine Wave Excitation Using Vibrational Speaker

M. Satthiyaraju [1], T. Ramesh [1],
[1] National Institute of Technology, Tiruchirappalli, Tamil Nadu, India

The dynamic response of microcantilever, which is a simple microelectromechanical system (MEMS) structure, to sine wave excitation is studied using the vibrational speaker set up in the atmospheric damping. Microcantilever is fabricated using micro wire cut EDM process for high precision. Mostly silicon material is used for microsystems based structure. Here stainless steel was used and machined ...

Design of Electroacoustic Absorbers Using PID Control

H. Lissek, R. Boulandet, and M. Maugard
Ecole Polytechnique Federale de Lausanne
Lausanne, Switzerland

An \"electroacoustic absorber\" is a loudspeaker, used as an absorber of sound, which acoustic impedance can be varied by electrical means. This can be achieved either by plugging passive shunt electric networks at the loudspeaker terminals (“shunt loudspeakers”) or by feeding back the loudspeaker with a voltage proportional to acoustic quantities, such as sound pressure and diaphragm normal ...

Finite Element Analysis into Eigenfrequencies of a Total Hip Stem with Different Levels of Loosening

T. Bender [1], M. Sass [1], W. Mittelmeier [1], R. Bader [1], D. Kluess [1]
[1] Department of Orthopaedics Research Laboratory for Biomechanics & Implant Technology, University Medicine Rostock, Rostock, Germany

A finite element model of a total hip replacement (THR) has been developed from the approach of modal analysis. The model is capable of determining the first 15 Eigenmodes of a THR with an artificial bone model. The model was equipped with several different defects to simulate a loosening of THR and to enforce a shifting of the frequency spectrum of the system’s Eigenfrequencies. Using the ...

Design and Simulation of Capacitive Pressure Sensor for Condition Monitoring

S. Sushma[1], R. Surekha[1], K. J. Rudhresha[1], S. Sahu [1], S. Singh4 [1], S. L. Pinjare6 [1],
[1] Dept. of ECE, Nitte Meenakshi Institute of Technology, Bangalore, Karnataka, India.

This poster focuses on the development of a capacitive pressure sensor for condition monitoring applications. One method to measure vibrations is to mount an pressure sensor on the vibrating machinery or object and measure the pressure exerted due to vibrations. Measured pressure level helps to detect any deviations from the normal conditions.

Optimization of an Acoustic Waveguide for Professional Audio Applications

M. Cobianchi[1] and R. Magalotti[1]
[1] B&C Speakers S.p.a., Bagno a Ripoli, FI, Italia

In modern live sound reinforcement there is a growing use of line sources, obtained through the stacking of many loudspeakers with properly controlled wavefront shape. Thus the use of waveguides is mandatory in order to modify the shape and size of the wavefront exiting from professional compression drivers. With the help of COMSOL Multiphysics®, we have designed a waveguide featuring an ...

Lamb Waves in Fluid-Loaded Plates

T. Kaufmann[1], F. Kassubek[1], D. Pape [1], M. Lenner[1]
[1]ABB Corporate Research, Baden-Dättwil, Switzerland

Lamb waves are elastic waves propagating in free solid plates. In the case of plates loaded with a fluid, the equations describing these waves have to be modified to include the effects of the fluid. In our work we have tackled this problem using COMSOL Multiphysics®. We have used the two-dimensional plane strain model of the solid mechanics interface to calculate the eigenmodes of the coupled ...

Simulation Studies on the Design of a Helmholtz Resonator type Underwater Acoustic Sensor

Karthi Pradeep[1], G. Suresh[2], V. Natarajan[2],
[1]National Institute of Technology, Tiruchirappalli, Kerala, India
[2]Naval Physical & Oceanographic Laboratory (NPOL), Kochi, Kerala, India

A Helmholtz resonator type acoustic sensor has been designed using analytical method and finite element modeling software, COMSOL Multiphysics®. The acoustic sensor is an aluminium double frustum, hour glass, shaped with the resonator at the bottom and an acoustic horn above to amplify the incoming acoustic signal. The horn provides a broad amplification of the incoming acoustic signal while the ...

Numerical Vibration Analysis of Impacted CFRP Specimens Using COMSOL Multiphysics® Software

P. Jatzlau [1], F. Seybold [1], C. Grosse [1],
[1] Technical University of Munich, Chair of Non-destructive Testing, Munich, Germany

The vibration behavior of carbon fiber reinforced composites (CFRP) specimens with impact damage is presented in order to evaluate if an before/after modal analysis can be used as a non-destructive testing method to detect delaminations. The impact damage is modeled by decreasing the stiffness in the described area of delamination. As detailed experimental data exists for the modeled structure, ...