Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

Modeling of Rotating Magnetic Field Eddy Current Probe for Inspection of Tubular Metallic Components

T. V. Shyam[1], B. S. V. G. Sharma[1], K. Madhusoodanan[1]
[1]Bhabha Atomic Research Centre, Mumbai, Maharashtra, India

Rotating Magnetic Field Eddy current technique is a promising technique for inspection of flaws in metallic tubular components. Three primary coils, 120 degrees apart in space, are excited with three phase current source, by virtue, a rotating magnetic field polarised in radial direction is generated. This radial field interacts with metallic tube and generates ...

First Approach Toward a Modeling of the Impedance Spectroscopic Behavior of Microbial Living Cells

D. Rauly [1], P. Xavier [1], E. Chamberod [2], J. M. F. Martins [3], J. Angelidis [4], H. Belbachir [5]
[1] IMEP-LAHC, Universite Grenoble Alpes, France
[2] IUT, Universite Grenoble Alpes, France
[3] LTHE, Grenoble Alps University - CNRS - IRD, France
[4] LEAS, St. Ismier, France
[5] HBA Biotech SA, Grenoble, France

The subject of the interactions between electromagnetic (EM) fields and living cells is a strong issue for several decades [1]. Large number of works have been done to study the EM field penetration and inner induced currents in living microorganisms. Relevant information to be collected deals with level and frequency of the EM signal that may affect the development of the considered cells. The ...

Prospects of Multiphysics Simulations to Steer the Development of High Brightness LED Technologies

T. Lopez [1], O. Shchekin [1],
[1] Lumileds, Eindhoven, Netherlands

The versatility of COMSOL Multiphysics® software has positioned it at competitive levels against other considered industrial-standard engineering software tools. This contribution is directed towards emphasizing the need of further developing the basic concepts of this versatile tool in order to enable the implementation of complex physics modeling techniques in rapid, flexible and customized ...

基于COMSOL的随钻电磁波电阻率仪器WPR探测特性研究

康正明 [1], 柯式镇 [1], 姜明 [1], 尹成芳 [1],
[1] 中国石油大学(北京),北京,中国

引言:随着水平井和大斜度井的增多,随钻测井(LWD)技术越来越重要。随钻电磁波电阻率测井在随钻测井中应用最为广泛。在国外,随钻电磁波电阻率测井方法已经成为一种成熟的测井技术,但我国仍处于研究发展阶段。20世纪90年代,大庆成功地研制出2MHz电磁波电阻率测井仪器。本世纪,中油测井成功引进并研制出了随钻电磁波电阻率测井仪WPR。仪器仿真对国内引进该仪器进行生产以及实际测井资料处理解释具有指导意义。本文借助COMSOL Multiphysics®仿真平台,建立了二维轴对称模型。模型分为三层和多层,选择AC/DC模块中的磁场。通过LiveLink for MATLAB®实现脚本加载模型并控制数据按一定格式输出为文本文件。考查了APS公司的随钻电磁波电阻率仪器WPR仪器的探测特性,对比了仿真结果与APS公司商业宣传介绍的仪器特性。同时对比了COMSOL与同类有限元仿真软件的误差 ...

Numerical Analysis of the Response of Thick Wires to Extreme Dynamic Electro-Mechanical Loads - new

R. Cunrath[1], M. Wickert[2]
[1]Fraunhofer EMI, Efringen-Kirchen, Germany
[2]Fraunhofer EMI, Freiburg im Breisgau, Germany

Research at Fraunhofer EMI addresses the response of materials in extreme dynamic loads. Besides mechanical or thermal loads, intense electric pulse currents also represent an extreme dynamic load. Experimentally, metallic samples, mainly thick wires, were electro-mechanically loaded with currents up to 400 kA. For this purpose, a test rig containing a high-voltage pulsed power supply and high ...

Electromagnetic and Coupled Field Computations: A Perspective

S. V. Kulkarni
Indian Institute of Technology
Bombay, India

S. V. Kulkarni a Professor in Electrical Engineering Department, Indian Institute of Technology, Bombay, India. Previously, he worked at Crompton Greaves Limited and specialized in the design and development of transformers up to 400 kV class. He has authored book \"Transformer Engineering: Design and Practice\" published by Marcel Dekker, Taylor & Francis Group. The author of more than 120 ...

Modeling and Simulation of Artificial Core-Shell Based Nanodielectrics for Electrostatic Capacitors Applications

D. Musuwathi Ekanath[1], N. Badi[1], and A. Bensaoula[2]
[1]Center for Advanced Materials, University of Houston, Houston, TX
[2]Dept. of Physics, University of Houston, Houston, TX

The need for high storage capacitors led to the development of polymer based capacitors. Polymers have high processability, mechanical flexibility, electrical breakdown strength and compatibility with printed circuit board (PCB) technologies; but usually have very low permittivity (K). In COMSOL Multiphysics software, the AC/DC module is selected and the In-plane electric currents are applied ...

FEM Modeling of Electric Field and Potential Distributions of MV XLPE Cables Containing Void Defect

M. Alsharif[1], P. Wallace[2], D. Hepburn[2], C. Zhou[2]
[1]Department of Physics, Faculty of Arts, Sebha University, Sebha, Libya
[2]School of Engineering & Computing, Glasgow Caledonian University, Glasgow, United Kingdom

Introduction: Failure in cable insulation is generally preceded by a degradation phase that may last several years. A significant cause of cable system failures is the breakdown of electrical insulation between the electrodes. The operational stresses that occur in cable insulation which include thermal, mechanical and electrical effects will vary with time and can cause degradation due to the ...

Looking for the Origin of Power Laws in Electric Field Assisted Tunneling

H. Cabrera[1], D.A. Zanin[1], L.G. De Pietro[1], A. Vindigni[1], U. Ramsperger[1], D. Pescia[1]
[1]Laboratory for Solid State Physics, ETH Zurich, Zurich, Switzerland

A sharp tip approached perpendicular to a conducting surface at subnanometer distances and biased with a small voltage builds a junction across which electrons can be transferred from the tip apex to the nearest surface atom by direct quantum mechanical tunneling. Such a junction is used e.g. in Scanning Tunneling Microscopy (STM). When the distance d between tip and collector is increased ...

Radiation Force Effect at the Dielectric Water-Air Interface - new

G. V. B. Lukasievicz[1], N. G. C. Astrath[2], L. C. Malacarne[2], M. L. Baesso[2], S. E. Bialkowski[3]
[1]Universidade Tecnológica Federal do Paraná, Toledo, PR, Brazil
[2]Universidade Estadual de Maringá, Maringá, PR, Brazil
[3]Utah State University, Logan, Utah, USA

The radiation force effects on the surface displacement can be calculated by solving the Navier-Stokes equation with appropriated boundary conditions. The surface deformation can be described by the radiation pressure as well as those forces due to gravity and surface tension. We used the photomechanical mirror (PM) method to measure the time-evolution of the nanometer deformation generated on ...