Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

First Approach Toward a Modeling of the Impedance Spectroscopic Behavior of Microbial Living Cells

D. Rauly [1], P. Xavier [1], E. Chamberod [2], J. M. F. Martins [3], J. Angelidis [4], H. Belbachir [5]
[1] IMEP-LAHC, Universite Grenoble Alpes, France
[2] IUT, Universite Grenoble Alpes, France
[3] LTHE, Grenoble Alps University - CNRS - IRD, France
[4] LEAS, St. Ismier, France
[5] HBA Biotech SA, Grenoble, France

The subject of the interactions between electromagnetic (EM) fields and living cells is a strong issue for several decades [1]. Large number of works have been done to study the EM field penetration and inner induced currents in living microorganisms. Relevant information to be collected deals with level and frequency of the EM signal that may affect the development of the considered cells. The ...

电磁力作用下金属小车的减速刹车过程研究

李晓南 [1], 刘国强 [1],
[1] 中国科学院电工研究所,北京,中国

利用惯性力学和电磁学,研究了一个金属小车沿着磁铁铺就的轨道做减速直线运动。其中,小车也可以看成是携带等量的磁铁剩磁,且沿着铁磁轨道减速运动。通过赋予小车一个初速度,例如100 m/s,然后再根据实际情况、赋予它一个特征密度,即小车有了一定的质量。当认为小车沿水平方向的轨道减速运动,忽略重力、空气阻力等其他一些影响因素时,小车将只受电磁的洛伦兹力的作用,而逐渐减速到零。 利用最新版的 COMSOL Multiphysics®,建模过程中,主要用到了“磁场和电场(mef)”和“全局常微分和微分代数方程(ge)”接口,涉及到的动力学和电磁学方程为 dv/dt=F/m F ⃗=∫_(V_vehicle)▒〖(J_induced ) ⃗×B ⃗dv〗 J_(i_y)=σ(v_z∙B_x-v_x∙B_z ) v 为小车即时速度,F 为洛伦兹力,J 为感应产生的涡流,v 为速度,B ...

Development of an On-Line Wall-Fouling Sensor for Pipeline Transportation of Heavy Oil-Water Mixtures

S. Rushd[1], and R.S. Sanders[1]
[1]Chemical & Materials Engineering Department, University of Alberta, Edmonton, AB, Canada

A beneficial method for transporting highly viscous hydrocarbons (e.g. heavy oil and bitumen) through a pipeline is known as Lubricated Pipe Flow (LPF). A major challenge for this technology is flow instability caused by the formation of a wall-coating of oil or the thinning and/or loss of the lubricating water layer in the pipe. This issue can be addressed by using capacitance sensors to ...

Using COMSOL Multiphysics in Eddy Current Non Destructive Testing Context

L. Santandrea, and Y. Le Bihan
Laboratoire de Génie Electrique de Paris, Gif-sur-Yvette, France

Eddy current testing (ECT) is widely used to check the integrity of electrically conducting parts and notably to detect flaws. It is based on the interaction between a probe and the part under testing. The finite element method (FEM) is well fitted to the modelling of these kinds of problems because of its large flexibility which allows to deal with complex probe and part configurations. In this ...

Current Density, Electric Field and AC Loss Simulation of Mono Block and Single Layer Polygonal HTS Cable Using COMSOL Multiphysics

G. Konar[2], R. K. Mandal[1], and N. Chakraborty[2]
[1]Electrical Engineering Department, Seacom Engineering College, Dhulagar,West Bengal, India
[2]Power Engineering Department, Jadavpur University, Kolkata, West Bengal, India

High temperature super conducting (HTS) cables are gaining attentions for their ability to transmit more power compared to their convention counterparts with essentially no resistance and electromagnetic emissions. They are also appropriate for solving the grid congestion problem in the power corridors with their reduced size and weight. But the AC loss that occurs in the HTS cables reduces the ...

Numerical Calculation of the Dynamic Behavior of Asynchronous Motors with COMSOL Multiphysics

J. Güdelhöfer[1], R. Gottkehaskamp[1], A. Hartmann[1]
[1]Department of Electrical Machines and Electromagnetic Field Theory, University of Applied Sciences Düsseldorf, Düsseldorf, Germany

This paper shows how a time-dependent and non-linear simulation of the dynamic operation behavior of an induction machine is executed by means of the \"Rotating Machinery\" interface from COMSOL Multiphysics 4.2a. The two-dimensional FEM model is connected to electrical circuits by coupling the physics \"Rotating Machinery\" and \"Electrical Circuit\" interfaces. These circuits include the ...

Electromagnetic Actuators Modeling, Simulation and Optimization: Review of Methods and Their Application for Switching Devices - new

O. Craciun[1], V. Biagini[1], G. Stengel[1], C. Reuber[2], C. Chao[3], B. Funieru[3] , A. Binder[3]
[1]ABB Corporate Research, Ladenburg, Germany
[2]ABB AG Calor Emag Mittelspannungsprodukte
[3]TU Darmstadt, Department of Electrical Energy Conversion, Darmstadt, Germany

Electromagnetic actuators are representing one important component of ABB's medium voltage reclosers [1, 2]. Their performance is strongly influenced by the considered material properties as well as by the electronic control units that will power the actuator. Depending on the studied phenomena, different modeling, simulation and optimization methodologies are being used for medium voltage ...

Multiple Solutions in the Theory of DC Glow Discharges

P. Almeida, and M. Benilov
Departamento de Física. Universidade da Madeira, Portugal

It was suggested long ago that a theoretical model of a near-cathode region in a DC glow discharge admits multiple steady-state solutions describing different modes of currrent transfer. Even the most simple self-consistent models should admit such multiple solutions. In the present work, these solutions have been calculated for the first time with COMSOL Multiphysics.

Highest Pulsed Magnetic Fields in Science and Technology, Assisted by Advanced Finite-Element Simulation

Thomas Herrmannsdörfer

Dr.
Forschungszentrum Dresden-Rossendorf, Germany

Thomas Herrmannsdörfer got his PhD in experimental physics from the University of Bayreuth in 1994. In 1995, he received the Research Award of the Emil-Warburg-Foundation while he worked at the DFG-Graduiertenkolleg Bayreuth. From 1995 – 1998 he worked as a scientist at Hahn-Meitner-Institute (HMI) Berlin. Since 1998, he has worked at Forschungszentrum Dresden ...

Probe Type Permanent Magnet Flowmeter

V. Sharma, S. Narmadha, S.K. Dash, R. Veerasamy, B.K. Nashine, K.K. Rajan, and P. Kalyanasundaram
IGCAR, Kalpakkam, Tamil Nadu, India

Prototype Fast Breeder Reactor (PFBR) is a 500MWe, sodium cooled, pool type, mixed oxide (MOX) fuelled reactor. Sodium flow measurement in various loops of the reactor is of prime importance from the operational and safety aspects. To measure the flow of electrically conducting sodium in large secondary circuit pipes, probe type permanent magnet flowmeters (PTFM) are used. PTFM works on the ...