Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

COMSOL Multiphysics® Software: Time-Lapse Electrical Resistivity Inversion - new

T. K. Chou[1], M. Chouteau[1], M. J. Yi[2]
[1]Department of Civil, Geological & Mining Engineering, École Polytechnique de Montréal, Montreal, QC, Canada
[2]Korea Institute of Geoscience and Mineral Resources, Daejeon, South Korea

Time-lapse electrical resistivity tomography (ERT) method provides a non-invasive way to monitor subtle sub-surface changes caused by water flow such as in an infiltration test. Problems arise when the inversion models contain artifacts due to measurement errors, rapid change in soil electrical property during measurement time, etc. A new approach was developed by Kim et al. (2004) and (2009) ...

Influence of Voltage Type and Polarity on Electric Field Distribution Along a Polymeric Insulator

Arshad [1], Dr. A. Nekahi [1], S. McMeekin [1], M. Farzaneh [2]
[1] School of Engineering and Built Environment, Glasgow Caledonian University, United Kingdom
[2] Canada Research Chair on Atmospheric Icing Engineering of Power Networks (INGIVRE), Université du Québec à Chicoutimi, QC, Canada

Electric field distribution along an insulator surface is of prime importance for the long term performance of insulators. In this paper electric field and potential distribution along a standard 33 kV polymeric insulator were investigated under different pollution conditions. Effect of voltage type and polarity on the electric field and potential distribution under contaminated conditions were ...

Estudo da Formação de Poros na Membrana Durante a Eletroporação de Células Biológicas

L. S. Pereira [1], G. B. Pintarelli [1], D. O. H. Suzuki [1],
[1] Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil

Este trabalho tem como objetivo o estudo do fenômeno da eletroporação, mais especificamente, a formação de poros nas membranas plasmática e nuclear, a fim de identificar previamente a influência de cada parâmetro ao longo do processo, buscando configurações que proporcionem melhores resultados. As simulações e estudos foram realizados com o software COMSOL Multiphysics ®. O Módulo AC/DC e a ...

Effect of an Iron Yoke of the Field Homogeneity in a Superconducting Double-Helix Bent Dipole

P.J. Masson, and R.B. Meinke
Advanced Magnet Lab, Palm Bay, FL, USA

Charged particle accelerators require large dipole fields with stringent homogeneity requirements needed to bend particle beams without defocussing. Commonly superconducting saddle coil magnets are used with an iron core to enhance the bore field. The iron uneven magnetization brings undesired multipole fields that need to be compensated for by pre-conditioning the beam with additional magnets. ...

A Study on the Suitability of Indium Nitride for THz Plasmonics

A. Shetty[1], K. J. Vinoy[1], S. B. Krupanidhi[2]
[1]Electrical Communication Engineering, Indian Institute of Science, Bangalore, India
[2]Materials Research Centre, Indian Institute of Science, Bangalore, India

As interest in the electromagnetic spectrum expands towards the infrared and terahertz range, the distinct advantages of using semiconductors instead of metals for plasmonic applications must be understood. Plasmonic resonances in gold (Au) and indium nitride (InN) gratings are studied, in the terahertz (?=30µm) regime. The electromagnetic properties of Au and InN are described by the Drude ...

Optimal Utilization of Railgun

N. R. Mahajan[1], S. B. Patel[1], Z. A. Khan[1]
[1]Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, Andhra Pradesh, India

Railgun is an electrically-powered gun that accelerates a conductive projectile along magnetic metal rails. Various factors increase the projectile velocity. Each method has its own advantages and disadvantages. While increasing the projectile velocity, one has to keep in mind the longevity of the rail guns for practical use . Railguns are often damaged after few uses due to the extreme working ...

Traveling Plasma Wave Levitation of Objects Supported by Coanda Effect - new

R. Eisenschmid[1]
[1]OPTIMA pharma GmbH, Schwäbisch Hall, Germany

Electrostatically excited plasma waves can induce a “plasma wind” in the surrounding media or air. The lifted object has a shape of a flying saucer, just for better illustration. A travelling plasma wave propulsion requires a pre-ionized media around the surface and a travelling electrostatic field. A simplified plasma model was used to set up an EFD (electro fluid dynamic) approach into a ...

Magnetic Devices For a Beam Energy Recovery THz Free Electron Laser - new

R. R. S. Caetano[1], G. Cernicchiaro[2], R. M. O. Galvão[3]
[1]Universidade Federal do Rio de Janeiro, Macaé, RJ, Brazil
[2]Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, RJ, Brazil
[3]Instituto de Física USP, São Paulo, SP, Brazil

This paper presents a numerical analysis of magnetic devices, dipole, quadrupole and undulator and a THz Free Electron Laser (FEL) electron-beam recovery system. Free Electron Laser are an important source of coherent radiation being used in the study of chemical properties of substances, thus being an important tool for various fields of science such as condensed matter physics, chemistry, ...

A 2D Inductively Coupled Plasma Chamber Model

Yang Xing [1], Yu Zhang [1], ShaoZhi Deng [1]
[1] State Key Lab of Optoelectronic Materials and Technologies, Guangdong Province Key Lab of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China

Inductively Coupled Plasma Chemical Vapor Deposition (ICPCVD) has been widely used for carbon-based nanomaterial synthesis because it provides high plasma densities and uniform plasma distribution and allows plasma to be generated in room temperature.[1] During the ICPCVD process, the plasma sheath and built-in electric field effectively impact the nanomaterial growth. Since plasma is a highly ...


康正明 [1], 柯式镇 [1], 姜明 [1], 尹成芳 [1],
[1] 中国石油大学(北京),北京,中国

引言:随着水平井和大斜度井的增多,随钻测井(LWD)技术越来越重要。随钻电磁波电阻率测井在随钻测井中应用最为广泛。在国外,随钻电磁波电阻率测井方法已经成为一种成熟的测井技术,但我国仍处于研究发展阶段。20世纪90年代,大庆成功地研制出2MHz电磁波电阻率测井仪器。本世纪,中油测井成功引进并研制出了随钻电磁波电阻率测井仪WPR。仪器仿真对国内引进该仪器进行生产以及实际测井资料处理解释具有指导意义。本文借助COMSOL Multiphysics®仿真平台,建立了二维轴对称模型。模型分为三层和多层,选择AC/DC模块中的磁场。通过LiveLink for MATLAB®实现脚本加载模型并控制数据按一定格式输出为文本文件。考查了APS公司的随钻电磁波电阻率仪器WPR仪器的探测特性,对比了仿真结果与APS公司商业宣传介绍的仪器特性。同时对比了COMSOL与同类有限元仿真软件的误差 ...