Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Identification and Analysis of Low-Frequency Cogging Torque Component in Permanent Magnet Machines

D. McIntosh
Sonsight Inc. / NSWC, Accokeek, MD, USA

Cogging torque in permanent magnet motors and generators is characterized by a torque ripple. These torque fluctuations cause vibrations, noise and speed fluctuations. This paper presents finite element (FE) analyses results that show a previously unaddressed low frequency modulation of cogging torque ripple. The paper resulted in an analytical formulation of cogging torque with low frequency ...

Design and Simulation of an Electromagnetic Valve Actuator Using COMSOL Multiphysics

R. Wislati , H. Haase
Leibniz Universität Hannover, Germany

In this paper an electromagnetic solenoid actuator (EMVA) consisting of an upper and lower electromagnet, a linear moving armature and two preloaded springs is considered as a potential approach in Variable Valve Actuation (VVA) Systems for Internal Combustion Engines. In opposition to common approaches the underlying EMVA make use of a permanent magnet in the upper electromagnet. The analysis ...

Modeling Directional Two Arm Archimedes Spiral Coils in the RF Electromagnet Range

A. Kalinowski, and J. Maguire
Naval Undersea Warfare Center/Div. Npt. , Newport, RI, USA

The paper addresses a class of problems for modeling and consequently simulating the electromagnetic field radiation pattern from a two arm Archimedes spiral coil. The performance of particular interest is knowledge of the radiated magnetic field H and electric field E in the neighborhood of the coil. The results in this paper illustrate how COMSOL is used to solve for the radiated ...

Modeling of Lightning Direct Effects - Interaction of Continuing Current with Aluminum Skins

Y. Kostogorova-Beller[1], and R. Collins[2]
[1]National Institute for Aviation Research, Wichita, KS, USA
[2]Hawker Beechcraft Corporation, Wichita, KS, USA

An interaction of aluminum aircraft skins with a laboratory-simulated, low-level, long-duration, continuing current representative of a natural lightning flash was modeled with COMSOL Multiphysics. For the analysis of the lightning direct effects on aircraft, the external environment is represented by the idealized current components. Particularly Component C is used and is characteristic of ...

Simulation and Fabrication of Wireless Passive MEMS Pressure Sensor

E.A. Unigarro Calpa[1], D.A. Sanz Becerra[1], A. Arciniegas[2], F. Ramirez[1], F. Segura-Quijano[1]
[1]Universidad de los Andes, Bogotá, Colombia
[2]Instituto Barraquer de América, Bogotá, Colombia

A wireless passive pressure sensor and the measurement system were design and simulated using COMSOL 4.3. The sensor is based on MEMS capacitor attached to a planar inductor for wireless powering and readout. An external coil is used for the measuring system. The pressure to be measured compresses the MEMS capacitor and changes sensor\'s resonance frequency. COMSOL 4.3 was used for the analysis ...

2D Eddy Current Analysis in Plane of Laminated Ferromagnetic Media

B. Scheerlinck[1], P. Sergeant[1]
[1]University College Ghent, Gent, Belgium

Laminated media are intended to conduct the magnetic flux in the plane (high resistance to limit the eddy currents). When fringing flux falls in perpendicularly to the plane, the surface for the eddy currents is no longer small. This will cause eddy current losses, which will reduce the efficiency of the application. A 2D FEM model for in plane losses in laminated ferromagnetic media due to ...

Simple Finite Element Model of the Topografiner - new

H. Cabrera[1], D. A. Zanin[1], L. G. De Pietro[1], A. Vindigni[1], U. Ramsperger[1], D. Pescia[1]
[1]Laboratory for Solid State Physics, ETH Zürich, Zürich, Switzerland

In our recent experiments we are revisiting the topografiner technology for the imaging of surface topography with a resolution of a few nanometers. In these new technique called Near-Field Emission Scanning Electron Microscopy (NFESEM), low-energy electrons are emitted from a polycrystalline tungsten tip via electric-field assisted tunneling. In order to characterize and improve the ...

Traveling Plasma Wave Levitation of Objects Supported by Coanda Effect - new

R. Eisenschmid[1]
[1]OPTIMA pharma GmbH, Schwäbisch Hall, Germany

Electrostatically excited plasma waves can induce a “plasma wind” in the surrounding media or air. The lifted object has a shape of a flying saucer, just for better illustration. A travelling plasma wave propulsion requires a pre-ionized media around the surface and a travelling electrostatic field. A simplified plasma model was used to set up an EFD (electro fluid dynamic) approach into a ...

Design of an Electrodynamic Levitation System with COMSOL Multiphysics® Software - new

H. P. Ferreira[1], A. Endalecio[1], E. Rodriguez[1], R. M. Stephan[1]
[1]Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil

Levitation has found important applications in several areas of engineering, from microgravity to transportation systems. Electrodynamic levitation consists of the interaction of a varying in time magnetic field – provided by an alternating voltage supplying a coil or a moving permanent magnet. The main applications of this technique are MagLev trains and magnetic bearings. The electrodynamic ...

Simulation of Sample Inhomogeneity in Microwave Impedance Microscopy

T. S. Jones [1], C. R. Pérez [1], J. J. Santiago-Avilés [1],
[1] University of Pennsylvania, Philadelphia, PA, USA

Microwave impedance microscopy (MIM) is a novel mode of atomic force microscopy that can measure topography and local electrical impedance simultaneously and with nanometer spatial resolution [1]. This technique is typically used qualitatively, identifying defects in nanodevices or imaging ferroelectric domain walls, for example. However, the technique also has the potential to be used in a more ...