Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Design of Dielectrophoretic Cell Traps in Microfluidics Devices Using COMSOL Multiphysics® Software

L. Velmanickam [1], K. Nawarathna [1],
[1] Department of Electrical and Computer Engineering, North Dakota State University, Fargo, ND, USA

The isolation of target cells from biological samples such as serum, urine or blood in high-throughput manner without contamination with other cells is the starting point of developing effective therapy for many diseases. Currently available methods for cell isolation/separation require extra labeling. Furthermore, separating target cells using current methods do not produce pure target cell ...

Interactive Design of an Electrostatic Headphone Speaker Using COMSOL Server™

B. A. Marmo [1], M. P. Snaith [1],
[1] Xi Engineering Consultants, Edinburgh, United Kingdom

An electrostatic headphone includes many interrelated design elements that affect the frequency response of the headphone and the users listening experience. Xi Engineering Consultants (XI) partnered with Warwick Audio Technologies (WAT) to investigate the complex behavior of one-side electrostatic speakers. Xi developed a GUI that helped WAT engineers optimize their speaker using virtual tools ...

Two-Dimensional Quasi–Static Analysis For Induction Motor with Faulty Rotor

M. Manna, and S. Miglani
SLIET
Sangrur
Punjab, India

This paper presents the Finite Element Method technique for predicting performance of Induction motor having Electric and Magnetic asymmetry for rotor cage due to some broken rotor bars. The motor parameters like magnetic vector potential, flux density, surface currents have been determined very precisely by carrying out two dimensional quasi static, transient analysis and by using one of the ...

Modeling and Simulation of Artificial Core-Shell Based Nanodielectrics for Electrostatic Capacitors Applications

D. Musuwathi Ekanath[1], N. Badi[1], and A. Bensaoula[2]
[1]Center for Advanced Materials, University of Houston, Houston, TX
[2]Dept. of Physics, University of Houston, Houston, TX

The need for high storage capacitors led to the development of polymer based capacitors. Polymers have high processability, mechanical flexibility, electrical breakdown strength and compatibility with printed circuit board (PCB) technologies; but usually have very low permittivity (K). In COMSOL Multiphysics software, the AC/DC module is selected and the In-plane electric currents are applied ...

Using the Electrical Field Analysis for Assessment of the Influence of Paper Insulation on Discharge Initiation in Oil

P. Rozga[1], D. Hantsz[1]
[1]Technical University of Lodz, Lodz, Poland

Conclusions about the influence of paper insulation on the electrical discharge initiation in mineral oil may be drawn on the basis of experimental studies. However, in some cases, these conclusions may be supported by electrical field analysis. Determination of maximum values of electrical field stress in the vicinity of model electrode setups may bring a new information about initiation ...

Measurement of Blood Flowrate in Large Blood Vessels Using Magnetic Flowmeter

S. Dasgupta [1], K. Ravikumar [1], P. Nenninger [2], F. Gotthardt [2],
[1] ABB, Bangalore, Karnataka, India.
[2] ABB, Gottingen, Germany.

This paper is an investigation into the effect of blood vessel movement on measurement accuracy of blood flow rate using magnetic flow meters. The investigation used a Finite Element model of the magnetic flowmeter built using COMSOL Multiphysics® software by integrating the modules of laminar fluid (blood) flow, electric and magnetic field and structural dynamics (FSI), to mimic performance of ...

Field-Circuit Coupling Applied to Inductive Fault Current Limiters

D. Lahaye[1], D. Cvoric[2], S. de Haan[2], and J. Ferreira[2]
[1]Delft Institute of Applied Mathematics, Department of Electrical Engineering, Mathematics and Computer Sciences, TU Delft, The Netherlands
[2]Electrical Power Processing Unit Department of Electrical Engineering, Mathematics and Computer Sciences, TU Delft, The Netherlands

Fault Current Limiters (FCLs) are expected to play an important role in the protection of future power systems due to the rising levels of the short-circuit currents. The inductive FCLs, comprising magnetic cores and one or more dc and ac windings, are particularly interesting because they inherently react on the fault. The so-called open-core FCL configuration employs only one magnetic core for ...

Analysis of Multiconductor Quasi-TEM Transmission Lines and Multimode Waveguides

S.M. Musa[1], M.N.O. Sadiku[1], and O.D. Momoh[2]
[1]Prairie View A&M University, Prairie View, TX, USA
[2]Indiana University-Purdue University, Fort Wayne, IN, USA

This paper presents an analysis approach of multicondcutor quasi-TEM lines transmission interconnect in a single dielectric region and multimode waveguides using the finite element method (FEM). FEM is especially suitable and effective for the computation of electromagnetic fields in strongly inhomogeneous media. We illustrate that FEM is suitable and effective as other methods for modeling of ...

Computation of Capacitance, Inductance, and Potential Distribution of Integrated-Circuit Interconnects for Unshielded Four Conductors with Three Levels Systems

S.M. Musa[1], M.N.O. Sadiku[1], J.D. Oliver[1]
[1]Prairie View A&M University, Prairie View, TX, USA

In this paper an attempt has been made to design and analyze integrated circuit interconnects for unshielded four conductors with three levels system using Finite Element Method (FEM). The computational and simulation work has been carried out with help of COMSOL Multiphysics software. We illustrate that FEM is as accurate and effective for modeling multilayered multiconductor transmission ...

Numerical Analysis of the Response of Thick Wires to Extreme Dynamic Electro-Mechanical Loads - new

R. Cunrath[1], M. Wickert[2]
[1]Fraunhofer EMI, Efringen-Kirchen, Germany
[2]Fraunhofer EMI, Freiburg im Breisgau, Germany

Research at Fraunhofer EMI addresses the response of materials in extreme dynamic loads. Besides mechanical or thermal loads, intense electric pulse currents also represent an extreme dynamic load. Experimentally, metallic samples, mainly thick wires, were electro-mechanically loaded with currents up to 400 kA. For this purpose, a test rig containing a high-voltage pulsed power supply and high ...