Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Smoothing the Path to Simulation-Led Device Design

B. Pryor, and R. Pryor
Pryor Knowledge Systems
Bloomfield Hills, MI

Using modeling software such as COMSOL Multiphysics during the design phase, an approach called “simulation-led design”, allows ideas to be both inspired and validated by the use of simulations. Then, using simulations after the product is designed can shorten the prototype-testing portion of the development process and reduce its cost. This paper provides specifics on the nature of the ...

The Transient Modeling of Single-Bubble Nucleate Boiling in a Sub-Cooled Liquid Using an ALE Moving Mesh

C. J. Forster, and M. K. Smith
Georgia Institute of Technology
Athens, GA

This paper investigates the evolution of a single bubble going through growth, pinch-off, and condensation while rising due to buoyancy forces in a sub-cooled liquid. Phase change is modeled on the evolving liquid-vapor interface by considering changes in enthalpy and heat fluxes at the interface. A comparison of the ALE model is made with the same single-bubble system computed with a level ...

Poromechanics Investigation at Pore-scale Using Digital Rock Physics Laboratory

S. Zhang[1],
N. Saxena[2],
P. Barthelemy[1], and
M. Marsh[1]
[1]Visualization Sciences Group, Burlington, MA, USA
[2]Stanford University, Palo Alto, CA, USA

Understanding the rock structure at nano to micro scale is of growing importance in geology, oil and gas, and hydrology. New approaches that relies on a variety of high resolution 3D imaging techniques offered tremendous potential. These new approaches, in the meanwhile, introduce significant new challenges. Starting from digital imaging data, the paper introduces an image-to-simulation ...

Deformation of Biconcave Red Blood Cell in the Dual-Beam Optical Tweezers

Y. Sheng, and L. Yu
University Laval
Quebec City, QC
Canada

A biconcave-shaped Red Blood Cell was trapped and deformed in a dual-trap optical tweezers. The two highly focused trapping beams of Gaussian intensity distribution were modeled as background field in the COMSOL Radio Frequency Module. The 3D radiation stress distribution on the cell surface was computed via the Maxwell stress tensor. The 3D deformation of the cell was computed with the ...

Analysis of Thermoelectric Phenomena

J. Crompton, S. Yushanov, L. Gritter, and K. Koppenhoefer
AltaSim Technologies, LLC.
Columbus, OH

Thermoelectric phenomena provide the direct conversion of heat into electricity or electricity into heat, the phenomena is described by three related mechanisms: the Seebeck, Peltier and Thomson effects. Thermoelectric devices have found many applications ranging from temperature measurement, solid state heating or cooling and direct energy conversion from waste heat. In this paper, analysis ...

A Flow Induced Vertical Thermoelectric Generator and its Simulation using COMSOL Multiphysics

E. Topal
Micro and Nanotechnology Program
Middle East Technical University
Ankara, Turkey

In this study, a new thermoelectric harvester with fluid flow for increased performance is introduced. The thermoelectric generator is 3D vertical configuration with p- and n-doped Silicon thermolegs. There is water flow between channels integrated through the thermoelectric columns, providing forced convection on the heat flow path. Our thermoelectric generator design can be used for energy ...

Coupled Magnetodynamic and Electric Circuit Models for Superconducting Fault Current Limiter

L. Graber[1], J. Kvitkovic[1], T. Chiocchio[1], M. Steurer[1], S. Pamidi[1], and A. Usoskin[2]
[1]Center for Advanced Power Systems, Florida State University, Tallahassee, FL
[2]Bruker Energy & Supercon Technologies Inc., Billerica, MA

Finite element models, which include the shielding characteristics of superconductors are often complex and would currently not allow us to study 3D models of devices of complex geometry such as fault current limiters. We propose instead a model based on variable electric conductivity, which is suitable to simulate magnetic field characteristics of inductive superconducting fault current ...

Simulation of Quench Propagation in a Double-Helix Superconducting Magnet with COMSOL Multiphysics

P. Masson
Advanced Magnet Lab
Palm Bay, FL

The paper presents the numerical analysis of quench propagation in a DH magnet wound with a commercially available MgB2 wire in a fiber-glass composite matrix and operating at 20 K. The quench is induced by a small heater located on the first layer of the magnet close to the peak field area. The quench dynamics, peak temperature along with detection requirements are derived from the simulation ...

Study of AC Electrothermal Phenomena Models

S. Loire, and P. Kauffmann
University of California
Santa Barbara, CA

Recently, electrokinetic flows have raised the interest of the scientific community. Driving flow with an electric field leads to promising applications for mixing, concentration, pumping application in lab on chips. However, current models are still inaccurate and don\'t fit the measures. The simple decoupled model developed by Ramos et al does not predict velocities for all parameters. ...

Double Pipe Heat Exchanger Modelling - COMSOL Uses in Undergraduate Education

L. Desgrosseilliers, and D. Groulx
Mechanical Engineering
Dalhousie University
Halifax, NS
Canada

A cornerstone of Chemical and Mechanical Engineering undergraduate programs the world over is the experimental and theoretical study of heat exchange. Graduating engineering students gain some appreciation in their lab course by comparing empirical correlations combined with the thermodynamics of heat exchange with the real operation of a counter-current, double pipe, single-phase heat exchanger.