Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

3D Electromagnetic Field Simulation in Microwave Ovens: A Tool to Control Thermal Runaway

T. Santos[1], L.C. Costa[1,2], M. Valente[1,2], J. Monteiro[1,2], and J. Sousa[3]
[1]University of Aveiro, Portugal
[2]I3N, Aveiro, Portugal
[3]TEKA Portugal S.A., Ílhavo, Portugal

In microwave heating applications, the energy is introduced directly into the volume of the material and as consequence the quality of the process is highly dependent on the uniformity of the electromagnetic field distribution along it. That is, the non uniformity of the heating is a potential problem with serious consequences. Thermal runaway is the most critical, in materials with temperature ...

Modelling the Effects of Temperature and Moisture Ingress on Capacitance and Dissipation Factor Measurements within Oil Impregnated Paper Transformer Bushings

D. Smith, S.G. McMeekin, B.G. Stewart, and P.A. Wallace
Glasgow Caledonian University, Glasgow, Scotland, United Kingdom

The majority of power transformer high voltage bushings today are of the condenser oil impregnated paper (OIP) type. The ingress of moisture, through the deterioration of the bushing over time, can result in a significant reduction in life and is a major failure mode of these bushings. Currently, the measurement of capacitance and dissipation factor is the most common method used to assess the ...

Numerical Study of a High Temperature Latent Heat Storage (200-300oC) Using Eutectic Nitrate Salt of Sodium Nitrate and Potassium Nitrate

C.W. Foong, J.E. Hustad, J. Løvseth, and O.J. Nydal
Department of Energy and Process Engineering, Norwegian University of Science and Technology, Trondheim, Norway

In this study, a small scale direct solar thermal energy storage system with secondary reflector is designed and developed. The main advantage of thermal energy storage is that cooking can be carried out during the time when there is little or no sun shine. In addition, no heat transport fluid is needed in this system. A well insulated heat storage should keep the heat for about 24 hours. KNO3 ...

Analysis Of Particle Trajectories For Magnetic Drug Targeting

A. Heidsieck, and B. Gleich
Zentralinstitut für Medizintechnik, TU München, München, Germany

The technique of magnetic drug targeting binds genetic material or drugs to superparamagnetic nanoparticles and accumulates them via an external magnetic field in a target region. However, it is still a challenge for this approach to succeed in areas with high flow rates, like the aorta or the heart ventricle. The magnetic field sources have to be accurately optimized and adapted to the local ...

Modeling of Laser Processing For Advanced Silicon Solar Cells

G. Poulain[1], D. Blanc[1], A. Kaminski[1], B. Semmache[2], and M. Lemiti[1]
[1]Université de Lyon: Institut des Nanotechnologies de Lyon INL, CNRS, INSA de Lyon, Villeurbanne, France
[2]SEMCO Eng., Montpellier Cedex 5 - France

Silicon solar cells still require cost reduction and improved efficiency to become more competitive. New architectures can provide a significant increase in efficiency, but today most of the approaches need additional processing steps. In this context, laser processing offers a unique way to replace technological steps like photolithography that is not compatible with the requirements of the ...

Modelling Flow through Fractures in Porous Media

E. Holzbecher[1], W.L. Wah[1], and M-S. Litz[2]
[1]Georg-August Universität Göttingen, Germany
[2]Freie Universität Berlin, Germany

There are various alternative options concerning modeling fluid flow within fractures in porous media. We give a general overview, with remarks concerning the modeling using COMSOL Multiphysics. Moreover we define and study two test cases for intercomparison. Finally for one of the testcases some results of an extensive sensitivity study is presented.

A Model of Gas Bubble Growth by COMSOL Multiphysics

B. Chinè[1,2], and M. Monno[1,3]
[1]Laboratorio MUSP, Macchine Utensili e Sistemi di Produzione, Piacenza, Italy
[2]Instituto Tecnològico de Costa Rica, Escuela de Ciencia e Ingenierìa de Materiales, Cartago, Costa Rica
[3]Politecnico di Milano, Dipartimento di Meccanica, Milano, Italy

We use COMSOL Multiphysics to model a gas bubble expansion in a viscous liquid initially at rest, a very common system for lightweight foamed materials from metal production and polymer processing. Modelling and simulation of foam processing during the production step involves many complexities, mainly due to the coupled momentum, mass and energy transport mechanisms, presence of more phases in ...

Modeling of High Temperature Superconducting Tapes, Arrays and AC Cables Using COMSOL

O. Chevtchenko
Technical University of Delft, The Netherlands

In this paper we present a set of numerical models created with COMSOL Multiphysics. The set includes quantitative models of a superconducting tape operated at 77 Kelvin, carrying a transport current and exposed to external magnetic field; an array of such tapes and a triaxial high temperature superconducting cable. Similar models were created in the past. However, an advantage of our approach ...

Structural Analysis: Going Beyond Standard Load Cases

I. Kjelberg
CSEM sa, Switzerland

Dr. Ivar Kjelberg is Senior Project Manager for Mechatronics in the Systems Engineering Division of CSEM SA in Neuchâtel, Switzerland. He obtained the diploma as \"Ingénieur Physicien\" from the Ecole Polytechnique Fédéreale EPFL in Lausanne, Switzerland in 1979, and a PhD at the local Institute for Plasma Physics (CRPP-EPFL) in 1986. He started his career at CSEM in 1988 and has since occupied ...

Modeling Of A Single Pulse Electric Discharge At Sphere/Flat Interface By Coupling Contact Multiphysics And Phase Transformations

G. Maizza, P. Di Napoli, and R. Cagliero
Dipartimento di Scienza dei Materiali ed Ingegneria Chimica, Politecnico di Torino, Torino, Italy

Contact electro-thermal phenomena are of great theoretical and technological interest to a large number of processing applications, such as spot welding, current-assisted sintering, electrical circuitry (switches) and motors. A model has been developed, aiming at predicting physical and metallurgical phenomena in a steel sample upon rapid heating induced by current pulse discharge. Electric ...

First
Previous
1–10 of 185