Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Coil Systems to Generate Uniform Magnetic Field Volumes

J.C. Olivares-Galvan[1], E. Campero-Littlewood[1],
R. Escarela-Perez[1], S. Magdaleno-Adame[2], and E. Blanco-Brisset[2]
[1] Universidad Autonoma Metropolitana - Azcapotzalco, Mexico City, DF, Mexico
[2] Cipress No. 88, Col. Las Arboledas, La Piedad, MH, Mexico.

This paper analyzes different types of coil systems to produce volumes of uniform magnetic field. Some types of coil system are presented in this paper such as Helmholtz, Merritt, and Ruben coil systems. In the study coil systems are intended to produce a magnetic flux density of 2µT in the center of the coil. The calculation of the magnetic flux density is done with COMSOL using analytical ...

Stefan's Problem: Validation of a One-Dimensional Solid-Liquid Phase Change Heat Transfer Process

D. Groulx, and W. Ogoh
Dalhousie University, Halifax, NS, Canada

A 1D phase change problem, known as Stefan’s problem, for which analytical solutions are available, is solved as a 2D problem using COMSOL Multiphysics. The PCM medium is semi-infinite, initially solid at its melting temperature Tm, and at t = 0, the wall temperature is raised to Tw > Tm, prompting the PCM to start melting, from pure conduction, in a linear fashion starting at x = 0. The length ...

COMSOL Assisted Simulation of Laser Engraving

H. Karbasi
Conestoga College, Kitchener, ON, Canada

The main purpose of this paper is to develop a proof of concept software that can simulate the geometry of engraved surfaces and can estimate the depth and width of engraved groove and associated laser parameters. For this purpose, COMSOL has been used to simulate the moving laser beam as a source of heat over physical domain made of different materials. Through interaction modeling of ...

Conducting Finite Element Convergence Studies Using COMSOL 4.0

M.K. Gobbert, and D.W. Trott
University of Maryland, Baltimore, MD, USA

We will show how to carry out convergence studies of the FEM error on a sequence of progressively finer meshes in COMSOL Multiphysics on the example of Lagrange elements of varying polynomial degrees, which will also bring out the benefit of using higher order elements. The sample studies will focus on Lagrange elements of degree 1 through 5. For these elements, the convergence order of the ...

Modeling Horizontal Ground Heat Exchangers in Geothermal Heat Pump Systems

A. Chiasson
University of Dayton, Dayton, OH, USA

Geothermal heat pumps use the earth as a heat source and sink via a ground heat exchanger (GHX) that consists of a network of buried heat exchange pipes, which can either be installed in vertical boreholes or in shallow horizontal trenches or excavations. The main goal in GHX design is to determine the minimum length of pipe needed to provide adequate fluid temperatures to heat pumps over their ...

Finite Element Analysis of Pipes Considering the Effects of Stress Concentration Due to Dents

S.C. de Oliveira[1], E.P. de Deus[2], and A.M. Mont'Alverne[2]
[1] Funcap/CNPq, CE, Brazil
[2] Universidade Federal do Ceara, Fortaleza, CE, Brazil

This paper presents a numerical analysis of indented pipes based on the Finite Element (FE) within the framework of COMSOL Multiphysics. Numerical models using two-dimensional solid plane strain elements are evaluated. Geometric nonlinear analysis, nonlinear isotropic hardening material and contact were also incorporated into the models. The numerical models are calibrated by using an ...

Failure Stress Analysis of Fiber Reinforced of Composite Laminates under Uniaxial/Biaxial Loading

Z. Hasan[1], F. Darwish[2], and S. Al-Absi[2]
[1]Texas A&M University, College Station, TX, USA
[2]Jordan University of Science and Technology, Irbid, Jordan

The main objective of the present work is to perform stress analysis on composite laminates under unaxial/biaxial loading to serve as a preliminary data for test verification. A detailed calculation based on the Classical Lamination Theory was performed for a laminate. The material used was carbon/epoxy applying a pure uniaxial load followed by a biaxial load. It was observed that the failure ...

Analysis of Lubricant Flow Through Reynolds Equation

K.C. Koppenhoefer[1], S.Y. Yushanov[1], L.T. Gritter[1], J.S. Crompton[1], and R.O. Edwards[2]
[1]AltaSim Technologies LLC, Columbus, OH, USA
[2]Cummins Fuel Systems, Columbus, IN, USA

Reynolds equation is used to analyze fluid flow through small gaps. As such, the solution of Reynolds equation provides critical information for a wide range of tribological problems. In any case where a lubricant resides between two moving surfaces, the Reynolds equation can be used to solve for the flow. In the case considered in this paper, lubricant flows between a piston and housing forced ...

Modeling of Transport and Reaction in a Catalytic Bed Using a Catalyst Particle Model

F. Allain, and A.G. Dixon
Worcester Polytechnic Institute, Worcester, MA, USA

A packed bed reactor consisting of spherical catalyst particles in a tube was simulated numerically. The steady-state pseudo-heterogeneous model consisted of a pseudo-continuum representation for the heat and mass transfer in the reactor tube. The reaction source terms were evaluated by explicitly solving a 1D spherical pellet model at each discretization point. The model implemented in COMSOL ...

Modeling Thickness Shear Mode Quartz Sensors for Increased Downhole Pressure & Temperature Applications

G.R. Kirikera, W. Patton, and S.M. Behr
Geophysical Research Company LLC, Tulsa, OK, USA

Numerous sensors based on various sensing principles are used to measure pressures and temperatures in wellbores. Of all these sensors, piezoelectric quartz is the most preferred means of sensing pressure and temperature and is probably the only sensor to meet stringent downhole measurement requirements. The sensor consists of a quartz piezoelectric resonator hermetically sealed between two ...