See How Multiphysics Simulation Is Used in Research and Development


Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2018 Collection
2010 - Bostonx

Electrostatic Fluid Structure Interaction (EFSI) on the Huygens Experiment

R. Godard [1], J. de Boer[1], N. Ibrahim[2], and G. Molina-Cuberos[3]
[1]Royal Military College of Canada, Kingston, ON, Canada
[2]University of Toronto, Toronto, ON, Canada
[3]Campus Espinardo, Murcia, Spain

The Huygens Atmospheric Structure Instrument (HASI) was designed to characterize the physical properties of the lower atmosphere and surface of Titan, the planet-size moon of Saturn. The Relaxation Probe (RP) sensor on the Huygens probe, determined the electrical conductivity in the ... Read More

Modeling Bacterial Clearance Using Stochastic-Differential Equations

A. Jeremic, and A. Atalla
McMaster University, Hamilton, ON, Canada

In this paper, we develop a mathematical model to simulate the movement of bacteria into and within a capillary segment. Also, we model the transportation through capillary walls by means of anisotropic diffusivity that depends on the pressure difference across the capillary walls. By ... Read More

Control Synthesis for Distributed Parameter Systems Modeled by FEM in COMSOL Multiphysics

C. Belavý, G. Hulkó, P. Buček, and S. Lel'o
Slovak University of Technology in Bratislava, Bratislava, Slovakia

Technological processes in the engineering practice from point of view of systems and control theory are frequently in the form of distributed parameter systems (DPS). Techniques of FEM based modeling and design of control synthesis methods of DPS which is acceptable for various ... Read More

Solving Two-scale Transport Laws During Frying of Foods Using COMSOL Multiphysics

J. Maneerote, and P.S. Takhar
International Center for Food Industry Excellence Texas Tech University, Lubbock, TX, USA

Microscale comprised of the scale of food biopolymers at which biochemical reactions and textural changes take place, and the macroscale was the scale of interaction of polymers with surrounding water, vapor and oil phases. Numerous novel equations such as generalized Darcy’s law based ... Read More

Parameter Optimization for FEM Based Modeling of Singlet Oxygen During PDT Using COMSOL

T.C. Zhu, and X. Liang
University of Pennsylvania, Philadelphia, PA, USA

Singlet oxygen (1O2) is the major cytotoxic agent in photodynamic therapy (PDT). The reaction between 1O2 and tumor cells defines the treatment efficacy. Based on a previously developed model that incorporates the diffusion equation for the light transport in tissue and the macroscopic ... Read More

Microsoft Technical Computing - The Advancement of Parallelism

T. Quinn
Microsoft, USA

Tom Quinn works as a Partner Business Development Manager for Microsoft as part of its HPC team working together with ISV, OEM and SI partners, in the HPC marketplace. Before joining Microsoft, Mr. Quinn worked as the Director of Government Business Development for Linux Networx, a ... Read More

Finite Element Analysis Approach for Optimization of Enzyme Activity for Enzymatic Bio-fuel Cell

Y. Song, and C. Wang
Florida International University, Miami, FL, USA

Enzymatic biofuel cells (EBFCs) are miniature, implantable power sources, which use enzymes as catalysts to perform redox reaction with biological fuels such as glucose. In this study using COMSOL Multiphysics, we use an EBFC chip, having three dimensional, highly dense micro-electrode ... Read More

Finite Element Modeling of a Cell Lysing Chip

S. Maloney[1,2], Y. Li[1,2], G. Auner[1], and J. Smolinski[1]
[1]Wayne State University, Detroit, MI, USA
[2]Lawrence Technological University, Southfield, MI, USA

We are working on a microfabricated lysing chip that uses a piezoelectric actuator to provide ultrasonic energy to break apart cells. The device contains pillars with varying dimensions. We hypothesize that increasing the aspect ratio of pillars will increase the efficiency of the ... Read More

Beam Structure As an Acoustic Wave Sensor: A Study of the Effect of Sensor Design on Its Sensitivity to Noise

F. Akasheh[1], A. Biddle[1], W.S. Shepard Jr.[2], and B.B.B. Zhang[2]
[1]Tuskegee University, Tuskegee, AL, USA
[2]University of Alabama, Tuscaloosa, AL, USA

The detection and identification of the location of a sound source is commonly done using arrays of microphones. A recent new alternative approach has been proposed which involves the use of continuous structures, such as beams or plates, as acoustic wave sensors. The sound wave ... Read More

A Mixed Boundary Value Problem That Arises in the Study of Adhesively Bonded Structures

R. Malek-Madani, and J.J. Radice
US Naval Academy, Annapolis, MD, USA

The study of deformation of an adhesively bonded sandwich structure reduces to solving the biharmonic equation for the Airy Stress subject to mixed boundary conditions. Because of the nature of the boundary conditions, this boundary value problem does not yield to the standard elementary ... Read More

111–120 of 120
Next |
Last