Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Pedagogic use of COMSOL Multiphysics for Learning Numerical Methods and Numerical Modeling

J-M. Dedulle
L'ecole Nationale Supérieure de Physique de Grenoble

The students at ESPNG have, since 2002, been using COMSOL Multiphysics in order to master physical phenomena and the finite element method. We developed several projects based on the modeling of physics phenomena, and, in this paper, we present projects based on Physical Vapor Transport and Magnetic Levitation. --------------------------------- Keynote speaker's biography: Jean-Marc ...

Analysis of the Electric Field and the Potential Distribution in Cavities Inside Solid Insulating Electrical Materials

T. Seghir[1], D. Mahi[1],T. Lebey[2], and D. Malec[2]
[1] Materials Laboratory, Electrical Engineering Institute, Amar Thelidji University of Laghouat, Algeria
[2] Electrical Engineering Laboratory, University of Paul Sabatier, Toulouse

Solid extruded polymeric materials such as crosslinked polyethylene are widely used in the electrical insulation of underground high voltage power transmission cables. This paper treats the combined effect of space charge and cavities, on the electric field, and potential and temperature distribution within the insulation. The model is a 3D stationary linear COMSOL Multiphysics model and the ...

Modeling of Drops Spreading on Patterned Surfaces

J. Frassy[1], C. Lécot[2], C. Delattre[3], and A. Soucemarianadin[1]
[1] LEGI UMR 5519, Grenoble
[2] LAMA UMR 5127, Le Bourget-du-Lac
[3] LETI, CEA Grenoble

We present simulations of drops spreading on heterogeneous surfaces. The droplet height is the solution of a time-dependent non-linear fourth order partial differential equation, which is solved using COMSOL Multiphysics. In the fully wetting case, we compare our results with experimental data and with previous results reported in the literature. The simulation results reveal how ...

Numerical Simulation of Moving Boundary Problems with the ALE Method: Validation in the Case of a Free Surface and a Moving Solidification Front

M. Carin
Université de Bretagne Sud

This work investigates numerical simulations of problems involving moving boundaries. The first case concerns the simulation of incompressible Newtonian fluid flow problems with free surfaces in the presence of surface tension (the sloshing problem). The second case deals with a problem of heat transfer in the presence of an advancing solidification front (the Stefan problem).

Catalytic Reactions under Non-steadystate Conditions

S. Pietrzyk, F. Dhainaut, A. Khodakov, and P. Granger
Université de Lille

In this paper, we present the modeling of catalytic reactions under non-steadystate conditions. Particularly, we study the Fisher-Tropsch reaction in a pulse reactor.

Elastic and Poro-Elastic Models of Ventricular Dilatation in Hydrocephalus

S. Momjian[1], and D. Bichsel[2]
[1] Hôpitaux Universitaires de Genève, Switzerland
[2] HESSO Ecole d’Ingénieurs de Genève, Switzerland

Elastic and poro-elastic models of ventricular dilatation in hydrocephalus are presented in this paper. An important result was the accumulation of fluid capping the horns of the ventricles. This indicates the importance of interstitial fluid in calculating of the deformation of the brain.

Numerical Simulations of Thixotropic Fluids

P. Dantan[1], and M. Faye[2]
[1] Université Paris7 Denis Diderot
[2] Université Paris11

In this paper, we introduce a kinetic equation coupled with the Navier-Stokes equations in COMSOL Multiphysics in order to simulate internal structural changes of a flowing complex fluid. Two physical applications are considered, the starting of blood flow in a stenosis and a simulation of a laboratory rheometric set-up. Results show good agreement with the experiments' well known ...

Prediction of the Transmitted Light Through a Nano-Aperture of SNOM Probes

G. Louarn, S. Taleb, and S. Cuenot
Institut des Matériaux Jean Rouxel, Nantes

The knowledge of the light propagation through a nanometer-size aperture is crucial for Scanning Optical Near Field Microscopy (SNOM). In this work, we address a numerical study of the transmitted electric field through a SNOM probe. The influence of the wavelength is also studied. Our results show that the logarithmic power decreases linearly as a function of the aperture size, and the ...

Compressional Waves Generation in Droplets of Water Deposited on a Quartz Crystal

G. Couturier, R. Boisgard, C. Jai, and J.P. Aimé
Université Bordeaux

In this paper, we investigate the compressional wave generation in droplets and use different techniques to correlate the compressional wave generation to the shape of the droplets. Results show a good correlation between eigenmodes predicted by the theory and those experimentally observed.

Thermal Modelling of Metal Surface Texturing by Pulsed Laser

J.M. Jouvard[1], A. Soveja[1,2], and N. Pierron[1]
[1] Laboratoire Laser et Traitements des matériaux, Université de Bourgogne, Le Creusot
[2] Faculté de Génie Mécanique, Université Politehnica Timisoara, Romania

Our work is to improve the surface texturing process by laser irradiation. In this study, thermal modelling of the laser-matter interaction for a single laser impact case is presented. A 1D modelling was carried out. The purpose was to determine the dimension of the liquid layer and the ablated matter volume. The model accounts for the evolution of material thermodynamic properties, the ...

Quick Search

1 - 10 of 37 First | < Previous | Next > | Last