Resources
White Papers and
Application Notes
- Thermal Management of Buildings
- Hardware and Simulation Software Advancements
- Modeling the Lithium-Ion Battery
Conference Collections
- User Presentation 2017
- User Presentation 2016
- User Presentation 2015
- User Presentation 2014
- User Presentation 2013
Additional Reading
Coupled Hydrochemical Modeling for the Optimal Design of an In-situ Redox Experiment
P. Trinchero[1], J. Molinero[1], G. Román-Ross[1], A. Nardi[1], L.M. De Vries[1], T. Karvonen[2], P. Pitkänen[3][1]Amphos 21, Barcelona, Spain
[2]WaterHope, Helsinki, Finland
[3]Posiva, Eurajoki, Finland
In this work, we present a number of scoping calculations that have been carried out to design an in-situ redox experiment (Figure 1) focused on assessing potential changes in the pH and redox conditions and in the buffering capacity of the Olkiluoto bedrock (i.e. the site for the Finnish spent fuel repository). A characteristic of these models lies in the need to integrate prior information, computed by a complex surface-subsurface 3D model (i.e. flow velocity field computed over the transmissive zone HZInf7 - see Figure 2), with a number of nonlinear reactions. This coupling has been achieved by using a Java interface (Nardi et al., 2012) that links COMSOL Multiphysics with the geochemical simulator PHREEQC (Parkhurst and Appelo, 1999).
