# Application Gallery

The Application Gallery features COMSOL Multiphysics® tutorial and demo app files pertinent to the electrical, structural, acoustics, fluid, heat, and chemical disciplines. You can use these examples as a starting point for your own simulation work by downloading the tutorial model or demo app file and its accompanying instructions.

Search for tutorials and apps relevant to your area of expertise via the Quick Search feature. To download the MPH-files, log in or create a COMSOL Access account that is associated with a valid COMSOL license. Note that many of the examples featured here can also be accessed via the Application Libraries that are built into the COMSOL Multiphysics® software and available from the File menu.

### Two-Phase Flow in Column

The first model describes the simultaneous flow of two immiscible fluids in porous media - here air displaces water in a multi-step inlet pressure experiment. We solve for the pressure and the degree saturation for the air and water within a representative volume and so track saturation levels rather than estimating a discrete location for the air-water interface. A second example is also ...

### Pore-Scale Flow

This non-conventional model of porous media flow utilizes creeping (Stokes) flow in the interstices of a porous media. The model comes from the pore-scale flow experiments conducted by Arturo Keller, Maria Auset, and Sanya Sirivithayapakorn of the University of California, Santa Barbara. The geometry used in the model was produced by scanning electron microscope images. In this example, we take ...

### Free Convection in a Porous Medium

This example treats the modeling of sub-surface flow where free convection in porous media is analyzed. The results are compared with published literature in the field. The model couples the momentum balance to an energy balance through an equation, dependent on temperature, being directly typed into the source term for the momentum balance. This shows COMSOL Multiphysics' unique equation ...

### Geothermal Doublet

This is one of the two models from the blog post about heat transfer in the subsurface: [Coupling Heat Transfer with Subsurface Porous Media Flow](/blogs/coupling-heat-transfer-subsurface-porous-media-flow/) The animated GIFs show the propagation of an isothermal cold front (295 K) for different groundwater velocities caused by different horizontal hydraulic gradients (0, 1, 5 mm/m). Note: ...

### Slope Stability with Pore Water Pressure in a Dam Embankment

A slope stability analysis is performed and the Factor of safety of the dam embankment is calculated by using the Shear Strength Reduction Technique. The pore water pressure is described with Darcy’s law and the Mohr-Coulomb constitutive model is used to describe the soil behavior. At first, a 2D model (plane strain) is investigated followed by a extruded 3D model. The 2D model and the 3D model ...

### Pesticide Transport and Reaction in Soil

Aldicarb is a commercial pesticide, used on a variety of crops, including cotton, fruits, potatoes, and beans. This arises in the possibility that the general population may be exposed to aldicarb through the ingestion of contaminated water and foods. This example looks at the degradation kinetics of aldicarb and its toxic by-products, investigating both the degradation time-scale as well as ...

### Biot Poroelasticity

The Poroelasticity interface couples Darcy's law and solid mechanics to assess deformation of porous media that results from fluid withdrawals. The model builds on top of the Terzaghi Compaction example. Results from Terzaghi compaction and Biot poroelasticity analyses are compared to each other and are a good match to published analyses.

### Buoyancy Flow with Darcy's Law—The Elder Problem

Density variations can initiate flow even in a still fluid. In earth systems, density variations can arise from naturally occurring salts, subsurface temperature changes, or migrating pollution. This buoyant or density-driven flow factors into fluid movement in salt-lake systems, saline-disposal basins, dense contaminant and leachate plumes, and geothermal reservoirs, to name just a few. This ...

### Forchheimer Flow

This is a tutorial model of the coupling between flow of a fluid in an open channel and a porous block attached to one of the channel walls. The flow is described by the Navier-Stokes equation in the free region and a Forchheimer-corrected version of the Brinkman equations in the porous region.

### Thermal Impact of a Borehole Heat Exchanger Array

This model shows how to compute an array of borehole heat exchangers (BHEs) for shallow geothermal energy production. The BHEs are simplified as cylindrical heat sinks with a uniform heat extraction rate. The array is embedded into a layered subsurface model with groundwater flow in one of the layers. For more details, please see the blog post "[Modeling Geothermal Processes with COMSOL Software](https://www.comsol.com/blogs/modeling-geothermal-processes-comsol-software/) ...

First
Previous
1–10 of 20