The Application Gallery features COMSOL Multiphysics® tutorial and demo app files pertinent to the electrical, structural, acoustics, fluid, heat, and chemical disciplines. You can use these examples as a starting point for your own simulation work by downloading the tutorial model or demo app file and its accompanying instructions.

Search for tutorials and apps relevant to your area of expertise via the Quick Search feature. To download the MPH-files, log in or create a COMSOL Access account that is associated with a valid COMSOL license. Note that many of the examples featured here can also be accessed via the Application Libraries that are built into the COMSOL Multiphysics® software and available from the File menu.

COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

Applying a Current-Voltage Switch to Models

This example exemplifies how to model the switching between current and voltage excitations in *Terminal* boundary conditions. A more detailed description of the phenomenon and the modeling process can be seen in the blog post "[Control Current and Voltage Sources with the AC/DC Module](https://www.comsol.com/blogs/control-current-and-voltage-sources-with-the-acdc-module/)".

Atmospheric Pressure Corona Discharge in Air

This tutorial model presents a study of a coaxial DC corona discharge in dry air at atmospheric pressure. The dimensions and operation conditions are similar to ones found in electrostatic precipitators with wire-to-plate configurations. The inner wire electrode has a 100-mm radius and the gap between electrodes is 10 cm. The model solves the electron and ion continuity and momentum equations ...

Benchmark Model of a Capacitively Coupled Plasma

The underlying physics of a capacitively coupled plasma is rather complicated, even for rather simple geometric configurations and plasma chemistries. This model benchmarks the Capacitively Coupled Plasma physics interface against many different codes.

Surface Chemistry Tutorial Using the Plasma Module

Surface chemistry is often an overlooked aspect of reacting flow modeling. This tutorial model shows how surface reactions and species can be added to study processes like chemical vapor deposition (CVD). The tutorial then models silicon growth on a wafer. Initially, the example uses a global model to investigate a broad region of parameters with complex chemistry. Then, a space-dependent model ...

Capacitively Coupled Plasma

The NIST Gaseous Electronics Conference has provided a platform for studying Capacitively Coupled Plasma (CCP) reactors, which is what this application is based upon. The operating principle of a capacitively coupled plasma is different when compared to the inductive case. In a CCP reactor, the plasma is sustained by applying a sinusoidal electrostatic potential across a small gap filled with a ...

GEC CCP Reactor, Argon Chemistry, 1D

The NIST GEC CCP reactor provides a platform for studying capacitively coupled plasmas. Even the simplest plasma models are quite involved so a 1D example helps in understanding the physics without excessive CPU time. The problem has no steady-state solution, although a periodic steady-state solution is reached after a suitable number of RF cycles (usually >1000).

Ion Energy Distribution Function

One of the most useful quantites of interest after solving a self-consistent plasma model is the ion energy distribution function (IEDF). The magnitude and shape of the IEDF depends on many of the discharge parameters; pressure, plasma potential, sheath width etc. At very low pressures the plasma sheath is said to be collisionless, meaning that the ion energy is not retarded by collisions with ...

Oxygen Boltzmann Analysis

The Boltzmann equation can be solved to validate sets of electron impact collision cross sections. In fact, sets of collision cross sections are traditionally inferred by solving a two-term approximation to the Boltzmann equation and comparing the results to swarm experiments. This model solves a two-term approximation to the Boltzmann equation and compares the computed drift velocity and ...

Boltzmann DC Glow Discharge

This application models a DC glow discharge. The electron energy distribution function (EEDF) and electron transport properties are computed with the *Boltzmann Equation, Two-Term Approximation* interface. Since input parameters for the *Boltzmann Equation, Two-Term Approximation* interface, like the ionization degree of the plasma, are not known *a priori*, an iterative process is performed. A ...

Argon Boltzmann Analysis

The electron energy distribution function (EEDF) plays an important role in the overall behavior of discharges. Analytic forms of the EEDF exist such as Maxwellian or Druyvesteyn, but in some cases they fail to fit the discharge physics. This tutorial model investigates the effects of various parameters on the electron energy distribution function and rate coefficients for an argon discharge.