The Application Gallery features COMSOL Multiphysics® tutorial and demo app files pertinent to the electrical, structural, acoustics, fluid, heat, and chemical disciplines. You can use these examples as a starting point for your own simulation work by downloading the tutorial model or demo app file and its accompanying instructions.

Search for tutorials and apps relevant to your area of expertise via the Quick Search feature. To download the MPH-files, log in or create a COMSOL Access account that is associated with a valid COMSOL license. Note that many of the examples featured here can also be accessed via the Application Libraries that are built into the COMSOL Multiphysics® software and available from the File menu.


Mechanics of a Golf Swing

How well you can strike a golf ball is not only determined by your muscle strength, but more importantly it is influenced by the mechanics of golf swing. The outcome of golf stroke is basically determined by the movement of the club head just prior to the impact with the ball. In this example, a multibody analysis of a golf swing is performed. Aim of the analysis is to maximize the club head ...

Forces and Moments on Bevel Gears

This tutorial model simulates a pair of straight conical bevel gears. The gears are modeled as rigid, but one of the gears is fixed while the other is hinged on a rigid bar. The rigid bar is also hinged at a point lying on the axis of the fixed gear. A transient analysis is performed to compute the forces and moments at the center of the fixed gear. The results of the analysis are compared with ...

Truck Mounted Crane Analyzer

Many trucks are equipped with cranes for handling loads. Such cranes have a number of hydraulic cylinders that control the motion of the crane. These cylinders and other components that make up the crane are subjected to large forces when handling heavy loads. In order to determine the load-carrying capacity of the crane, these forces must be computed. In the Truck-Mounted Crane Analyzer app, a ...

Dynamic Behavior of a Spring Loaded Rotating Slider

This model illustrates the modeling of slider motion caused by a base rotation. The motion of the slider is analyzed under various forces such as inertia force, centrifugal force, spring force and damping force. The prismatic joint, which is used to connect the two components, is spring loaded and also includes damping effects. The motion of the slider is compared with the analytical ...

Stresses and Heat Generation in Landing Gear

This model simulates the dynamics of the shock absorber used in a landing gear mechanism of an aircraft. It analyses the stresses, as well as the heat generated in the landing gear components due to the energy dissipated in the shock absorber. A prismatic joint, with spring and damper, is used to model the shock absorber assembly.

Four-Bar Mechanism with Assembly Defect

This is a benchmark model for flexible multibody dynamics. This model simulates the dynamic behavior of a planar four-bar mechanism when one of the joints has a defect. The out-of-plane motion in the mechanism, caused by the defect in the joint, is compared with the results from the reference.

Optimization of a Crane Link Mechanism

In complex mechanical systems, it can be challenging to find an optimal (or even good enough) solution only through engineering insight or trial-and-error procedures. Using mathematical optimization methods can then be an efficient path to a better design. In this example, a link mechanism in a crane modeled in the Multibody Dynamics Module is optimized using the Optimization Module. The target ...

Simulation of a Counterweight Trebuchet

In this multibody dynamics model of a simple counterweight trebuchet, a parametric sweep is used to study throwing distance as function of the sling length. For more details on performing a multibody analysis of a counterweight trebuchet, see this blog post: [What Is the Physics Behind a Counterweight Trebuchet?](/blogs/what-is-the-physics-behind-a-counterweight-trebuchet/)

Walking Instability in a Washing Machine

Walking instability, due to non-uniform distribution of clothes, is a common problem in lightweight portable washing machines. This problem is more severe in horizontal-axis washing machines, which are more popular because of their high efficiency in spite of high manufacturing cost. This model simulates a simplified model of a horizontal-axis portable washing machine and predicts the verge of ...

Slider Crank Mechanism

This is a benchmark model to test the numerical algorithms in the area of multibody dynamics. This model simulates the dynamic behavior of the slider crank mechanism. This mechanism goes through singular positions during its operation. The acceleration at a point is compared with the results from the reference.