Model Gallery

The Model Gallery features COMSOL Multiphysics model files from a wide variety of application areas including the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use models and step-by-step instructions for building the model, and use these as a starting point for your own modeling work. Use the Quick Search to find models relevant to your area of expertise, and login or create a COMSOL Access account that is associated with a valid COMSOL license to download the model files.

Rising Bubble

The level set method is well suited for problems with moving boundaries in which the geometry’s topology changes with time. A bubble of oil that travels up through water and finally merges with oil at the top causes this kind of topology change. For problems where the topology is unchanged as a function of time, as in free surface movement in a tank (no splashing) and impeller stirring, it is ...

Inkjet Nozzle: Level Set

Inkjet printers are attractive tools for printing text and images because they combine low cost and high resolution with acceptable speed. Designers can vary several parameters to modify a printer’s performance. Simulations can be useful to improve the understanding of the fluid flow and to predict the optimal design of an inkjet for a specific application. Although initially invented to ...

NACA 0012 Airfoil

This model simulates the flow around an inclined NACA 0012 airfoil at different angles of attack using the SST turbulence model. The results show good agreement with the experimental lift data of Ladson and the pressure data of Gregory and O’Reilly.

Displacement Ventilation of Air in a Room

In general, there are two classes of ventilation: mixing ventilation and displacement ventilation. In displacement ventilation, air enters a room at the floor level and displaces warmer air to achieve the desired temperature. Heating sources in the room can include running electronic devices, or inlet jets of warm air. A potential issue with the displacement ventilation approach is that ...

Flow in a Bubble Column Reactor

This example illustrates multiphase flow modeling in a bubble column reactor. The reactor is filled with water and gas bubbles are injected from the bottom. Due to buoyancy, the bubbles rise, inducing a circulating motion of the liquid. Furthermore, as the bubbles rise through the water, gas dissolves from the bubbles into the liquid. The example uses the macroscopic, two-phase flow model ...

Flow of Oldroyd-B Viscoelastic Fluid

Many complex fluids of interest exhibit a combination of viscous and elastic behavior under strain. Examples of such fluids are polymer solutions and melts, oil, toothpaste, and clay, among many others. The Oldroyd-B fluid presents one of the simplest constitutive models capable of describing the viscoelastic behavior of dilute polymeric solutions under general flow conditions. Despite the ...

Modeling Nonisothermal Flow with Gravity Volume Forces

The influence of gravity on the flow pattern is often an important issue when modeling flow in fluids with variable density. You can account for this influence in the model equations by adding, to the momentum balances, the volume force. This model shows a simple example of the implementation of boundary conditions when volumetric forces are included in the momentum balances. This can be used ...

Separation Through Electrocoalescence

Applying an electric field across a suspension of immiscible liquids may stimulate droplets of the same phase to coalesce. The method known as electrocoalescence has important applications, for instance, in the separation of oil from water. To model electrocoalescence, you need to solve the Navier-Stokes equations, describing the fluid motion, as well as track the interfaces between the ...

Bending Pipe

This model studies the fluid flow through a bending pipe in 3D for the Reynolds number 300 000. Because of the high Reynolds number, the k-epsilon and the k-omega turbulence models are used. Calculations with and without corner smoothing are performed. The results are compared with experimental data.

The Magnus Effect

The Magnus effect explains the curl that soccer players can give the ball, resulting in the enjoyable goals that we can see in every World Cup™. This model looks at the Magnus effect in the laminar and turbulent flow regimes for transient and stationary flows. It also discusses the simulation results and relates them to experimental measurements on soccer balls found in the literature.

Quick Search