Quick Search

Tin Melting Front

Application ID: 6234


This example demonstrates how to model phase transition by a moving boundary interface according to the Stefan problem. A square cavity containing both solid and liquid tin is submitted to a temperature difference between left and right boundaries. Fluid and solid parts are solved in separate domains sharing a moving melting front. The position of this boundary through time is calculated according to the Stefan energy balance condition. In the melt, motion generated by natural convection is expected due to the temperature gradient. This motion, in turn, influences the front displacement.

This application was built using the following:

Heat Transfer Module

The combination of COMSOL® products required to model your application depends on the physics interfaces that define it. Particular physics interfaces may be common to several products (see the Specification Chart for more details). To determine the right combination of products for your project, you should evaluate all of your needs in light of each product\'s capabilities, consultation with the COMSOL Sales and Support teams, and the use of an evaluation license.