Quick Search

Species Transport in the Gas Diffusion Layers of a PEM

Application ID: 260


This example focuses on the species transport within the gas diffusion layers (GDLs) of a proton exchange membrane (PEM) fuel cell. The geometry models a cell with two adjacent flow channels of different pressures, a situation that may occur in a cell with serpentine flow channels, or in a cell using an interdigitated flow field design. The model uses current balances, mass transport equations (Maxwell-Stefan diffusion for reactants, water and nitrogen gas), and momentum transport (Darcy’s law for the gas flows) to simulate a PEM fuel cell’s behavior.

This application was built using the following:

Batteries & Fuel Cells Module

The combination of COMSOL® products required to model your application depends on the physics interfaces that define it. Particular physics interfaces may be common to several products (see the Specification Chart for more details). To determine the right combination of products for your project, you should evaluate all of your needs in light of each product's capabilities, consultation with the COMSOL Sales and Support teams, and the use of an evaluation license.