Quick Search

Caughey-Thomas Mobility

Application ID: 15561

With an increase in the parallel component of the applied field, carriers can gain energies above the ambient thermal energy and be able to transfer energy gained by the field to the lattice by optical phonon emission. The latter effect leads to a saturation of the carriers mobility. The Caughey Thomas mobility model adds high field velocity scattering to an existing mobility model (or to a constant input mobility).

This model demonstrates how to use the Caughey-Thomas high field saturation model for the electron and hole mobility. Field dependent mobility makes a problem which is already highly non-linear even more non-linear. It is necessary to use the continuation study extension to obtain convergence in the high field limit.

This model is included as an example in the following products:

Semiconductor Module

The combination of COMSOL® products required to model your application depends on several factors and may include boundary conditions, material properties, physics interfaces, and part libraries. Particular functionality may be common to several products. To determine the right combination of products for your modeling needs, review the Specification Chart and make use of a free evaluation license. The COMSOL Sales and Support teams are available for answering any questions you may have regarding this.