Which Porous Media and Subsurface Flow Interface Should I Use?

Peter Lyu February 13, 2017

Simulating fluid flow underground or in other porous media is common in a number of engineering fields, such as agricultural, chemical, civil, and nuclear engineering. To help engineers and scientists simulate different types of porous media flow, the COMSOL Multiphysics® software provides a comprehensive set of physics interfaces. Today, we will go over the various interfaces that you can use and discuss how to choose the best one for your application.

Read More

Categories

Edmund Dickinson February 9, 2017

Electrochemical impedance spectroscopy is a versatile experimental technique that provides information about an electrochemical cell’s different physical and chemical phenomena. By modeling the physical processes involved, we can constructively interpret the experiment’s results and assess the magnitudes of the physical quantities controlling the cell. We can then turn this model into an app, making electrochemical modeling accessible to more researchers and engineers. Here, we will look at three different ways of analyzing EIS: experiment, model, and simulation app.

Read More

Bridget Cunningham February 8, 2017

Electrical installations must often adhere to requirements for the maximum electric field levels in their surrounding area. Electric fields that are too high can be harmful to both operators and the general public. Simulation is typically used to verify that these levels meet the requirements, otherwise significant redesigns may be needed much later on. The Application Builder enables design engineers to perform verification studies earlier in the process.

Read More

Andrew Griesmer February 7, 2017

The Open Recovery File feature is a somewhat unknown feature in the COMSOL Multiphysics® software, but it’s useful for anyone running simulations that give multiple solutions. If, for any reason, the software shuts down before the simulation finishes, you can open a recovery file so that you don’t lose your work. Here, we highlight a tutorial video on how to open these files to recover “lost” work as well as go over the strengths and limitations of this feature.

Read More

Bridget Paulus February 6, 2017

If bubbles in a microfluidic device become stuck, it can cause the device to malfunction. Bubble entrapment depends on several factors, including the geometry and flow characteristics of the microchannel, as well as the surface properties of its walls. To study these aspects, Veryst Engineering modeled a bubble in a microchannel using the COMSOL Multiphysics® software. Today, we look at their results, which shed light on the device geometries and contact angles that lead to bubble entrapment.

Read More

Ed Fontes February 2, 2017

Fat-washing cocktails has become popular in the last decade. This technique has made it possible for bartenders to create drinks such as the Benton’s Old-Fashioned, a bacon-infused bourbon cocktail, and a milder pecan-butter-infused bourbon. In this blog post, we discuss this innovative cocktail technique and how it can be transferred to an industrial scale. In fact, many chemical processes in a variety of industries already use similar methods.

Read More

Categories

Hanna Gothäll February 1, 2017

Topology optimization can be a useful step in your design process, but the generated designs often require further analysis. With the COMSOL Multiphysics® software, you can create geometries out of your topology optimization result plots and easily export them to CAD software. In this blog post, we discuss how to do so, using both 2D and 3D examples.

Read More

Caty Fairclough January 31, 2017

An expansion fan occurs when a supersonic flow turns around a convex corner. When analyzing this phenomenon, you need to make sure your simulation results are accurate and agree well with existing theory. Here, we will show you that this is possible with the COMSOL Multiphysics® software and CFD Module. We discuss a benchmark model of a supersonic expansion fan and compare it to the inviscid compressible flow theory. We’ll also share a couple of tricks for improving this model.

Read More

Categories

Andrew Strikwerda January 30, 2017

Welcome back to our discussion on multiscale modeling in high-frequency electromagnetics. Multiscale modeling is a simulation challenge that arises when there are vastly different scales in a single simulation, such as the size of an antenna compared to the distance between the antenna and its target. Today, in Part 4 of the series, we will examine how we can construct a multiscale model by coupling a Full-Wave antenna simulation with a geometrical optics simulation using the Ray Optics Module.

Read More

Amelia Halliday January 27, 2017

In a previous post, we introduced the help tools included in the COMSOL Multiphysics® software. You can access additional resources on the COMSOL website, including the COMSOL Blog, Video Gallery, Application Gallery, Discussion Forum, Model Exchange, and Support Knowledge Base. In this blog post, we discuss these resources and point you to a video that shows how to use these tools for software and modeling guidance.

Read More

Mads Herring Jensen January 26, 2017

Modeling acoustically large problems requires a memory-efficient approach like the discontinuous Galerkin method. To make solving these types of problems easier, we’ve added a new physics interface based on this method to the Acoustics Module: the Convected Wave Equation, Time Explicit interface. It can include a stationary background flow and is suited for modeling linear ultrasound applications. Today, we will explore how to use this interface with the example of an ultrasound flow meter.

Read More

Categories


Categories


Tags

1 6 7 8 9 10 121