Studying Manifold Microchannel Heat Sinks with Simulation

Bridget Paulus | May 16, 2016

When an electronic device overheats, it risks starting a fire. Cooling components, such as heat sinks, are designed to prevent this, but can’t always keep up with advancing technology. Simulation offers a solution by illustrating how well various heat sink designs conduct heat and how adding elements like manifold microchannels (MMC) improves performance. Today, we’ll explore how an MMC heat sink operates with simulation.

Read More

Caty Fairclough | May 12, 2016

Dorothy Crowfoot Hodgkin is a Nobel Prize-winning scientist whose research advanced the field of X-ray crystallography and determined the structures of several important biochemical substances, including penicillin, vitamin B12, and insulin. Today, on the anniversary of her birthday, we’ll take a look at her life and accomplishments.

Read More

Categories

Aditi Karandikar | May 11, 2016

Lasers, focused beams of photons of a single wavelength, find use in a wide variety of applications today — from noninvasive surgeries and fiber optic communication to material processing and even DVD players. Let’s see how a research team from Lawrence Livermore National Laboratory (LLNL) used the power of multiphysics simulation to investigate laser-material interaction to avoid the damage of optics internal to high-power laser systems.

Read More

Ed Fontes | May 10, 2016

In the first part of this blog series, we focused on designing a user interface with an ordered and clear structure. Today, we discuss tips for designing apps with an enhanced workflow and user experience. Learn about how to improve user workflow in your simulation app through structure, tooltips and warning messages that provide information, and more.

Read More

Categories

Caty Fairclough | May 9, 2016

Have you ever wondered how tigers develop their stripes? Alan Turing’s theory of morphogenesis offers one possible explanation for this occurrence, suggesting that patterns, such as stripes, develop naturally from initially homogeneous states. Today, we’ll take a closer look at Turing’s theory and explore some modern research on this topic, including the modeling of branching morphogenesis in COMSOL Multiphysics.

Read More

Ed Fontes | May 5, 2016

The Application Builder in the COMSOL Multiphysics® simulation software offers almost unlimited freedom in the design of apps. But as engineers, we need to balance our creativity with focus to avoid disorder in our simulation app design. In the first installment of a two-part blog series, we give a few guidelines that will help you create apps with a clear, streamlined design and structure.

Read More

Categories

Brianne Costa | May 4, 2016

Shouldn’t the way you design a device be just as efficient as the device itself? When designing a centrifugal governor, the main goal is to increase the overall operation efficiency of an engine. With our Centrifugal Governor Simulator demo app, you can easily and quickly test a wide spectrum of parameters and physical studies to optimize the performance of the device. Today’s blog post offers insight.

Read More

Caty Fairclough | May 3, 2016

Why are the famous paintings on the walls of a Netherlands chapel deteriorating? To answer this question, researchers from the Eindhoven University of Technology used physical measurements and simulation to evaluate how rising moisture affects the chapel’s artwork. Today, we’ll see how their research helped provide a better understanding of the damage occurring within this cultural heritage site.

Read More

Bridget Cunningham | May 2, 2016

Graphene is a material with a strong presence — and impact — throughout the scientific community. Amongst its many uses, researchers are looking to graphene as a potential material solution within sensor designs for medical and biosensing applications. Today, we’ll explore the role of simulation in analyzing and optimizing a 3D multilayered graphene biosensor.

Read More

Bridget Cunningham | April 28, 2016

The ability to adapt to unpredictable or dangerous environments is an important advantage for any vehicle or device. Developing materials with the ability to shift in shape can offer potential for new technologies to handle such situations. With the design of a new hybrid material, engineers at Cornell University are bringing new developments of this nature to the fields of soft robotics and aeronautics.

Read More

Categories

Magnus Ringh | April 27, 2016

You can use the residual operator, new with COMSOL Multiphysics version 5.2, to evaluate and plot your model’s algebraic residual in order to troubleshoot convergence issues. This blog post demonstrates the use of the residual operator for visualizing and understanding the convergence properties of a turbulent flow simulation.

Read More


Categories


Tags

1 6 7 8 9 10 107