## Natural Frequencies of Immersed Beams

##### Nagi Elabbasi | April 22, 2014

Today, we invite guest blogger Nagi Elabbasi of Veryst Engineering to share a modeling example of immersed beams. When thin structures such as beams, plates, or shells are immersed in a fluid, their natural frequencies are reduced. The fluid also affects their mode shapes and is a source of damping. This phenomenon affects structures across a wide range of industries and sizes, from micro-scale structures (e.g. MEMS actuators) to larger structures (e.g. ships).

Read More##### Clemens Ruhl | April 21, 2014

The Wall Distance interface is used to calculate the distance to a wall in the turbulent flow interfaces available in COMSOL Multiphysics. It can be combined with any other interface and comes in handy when we need to calculate the distance to the nearest wall or detect, as part of a dynamic model, when a moving object will hit a wall. Today, we will study how the Wall Distance interface works and how other interfaces can benefit from its capabilities.

Read More##### Fanny Littmarck | April 18, 2014

Did you know that you can use MATLAB® functions in your COMSOL Multiphysics® models? Well, you can, and in this video tutorial we will show you how, using LiveLink™ for MATLAB®.

Read More##### Edmund Dickinson | April 17, 2014

What’s a penny made of? Though they appear to be solid copper coins, they actually don’t contain much copper at all these days. Instead, the U.S. Mint saves money by applying only a veneer of valuable metal onto a less expensive one. Have you ever thought about the manufacturing process by which this is achieved? Let’s find out.

Read More##### Lorant Olasz | April 16, 2014

The geometric kernel is the software component responsible for handling geometry in COMSOL Multiphysics®. You may be wondering what this means or how and why you would use it when modeling. Let’s find out.

Read More##### Fanny Littmarck | April 15, 2014

There are two main resources for finding COMSOL Multiphysics tutorial models: our online Model Gallery and the Model Library within the software. We also continuously push out model updates that you can download to your Model Library. Here’s your guide to what these resources are and how to use them.

Read More##### Walter Frei | April 14, 2014

One of the questions we get asked all the time is: “Can I use COMSOL Multiphysics for solving my fluid-structure interactions problems?” Of course the answer is yes, so let’s talk a little about the various fluid-structure interaction (FSI) modeling techniques. Along the way, we will introduce the add-on modules you will need for these various types of analyses.

Read More##### Pär Persson Mattsson | April 11, 2014

Many of us need up-to-date software and hardware in order to work efficiently. Therefore, we need to follow the pace of technological development. But, what should we do with the outdated hardware? It feels wasteful to send the old hardware to its grave or to just put it in a corner. Another, more productive, solution is to use the old hardware to build a Beowulf cluster and use it to speed up computations.

Read More##### Eyal Spier | April 10, 2014

The last two blog posts in the Chemical Kinetics series were concerned with modeling chemical reactions based on a particular set of parameters. While this is important and of great academic and industrial interest, the relevant parameters were assumed. Now, let’s find out how to estimate the chemical parameters using COMSOL Multiphysics.

Read More##### Walter Frei | April 9, 2014

In a previous posting, we looked at computing and controlling the volume of a cavity filled with an incompressible fluid, which solved for the static deformation of a fluid-filled rubber seal. In that example, we did not explicitly model the fluid, but added an equation to solve for the pressure, assuming incompressibility of the fluid. Here, we will extend this approach and include the hydrostatic pressure of the fluid in the deforming container.

Read More##### Fanny Littmarck | April 8, 2014

The Mach-Zehnder modulator is a type of optical modulator used for communication applications. To understand how it works and how to optimize its design, you can use the COMSOL simulation software.

Read More